

(20)

米

 STAR

 STAR

 ATLAS

 ATLAS}

CONTAINING
Maps of all the Stars from 1 to 6.5 Magnitude between the North Pole and 34° South Declination, and of all Nebulæ and Star Clusters in the same region which are visible in telescopes of moderate powers.

Catith) $\mathfrak{E x p l a m a t o r y ~} \mathbb{C e x t}$

${ }^{\text {By }}$

DR. HERMANN J. KLEIN.

TRANSLATED AND ADAPTED FOR ENGLISH READERS BY

EDMUND MCCLURE, M.A., M.R.I.A.

WITH EIGHTEEN MAPS.

PRINTTED BY E. A. FUNKKE, IEIPSIC

PUBLISHED UNDER THE DIRECTION OF THE COMMITTEE OF GENERAL LITERATURE AND EDUCATION APPOINTED BY THE SOCIETY FOR PROMOTING CHRISTIAN KNOWLEDGE.

London:

SOCIETY FOR PROMOTING CHRISTIAN KNOWLEDGE, Northumberland avenue, charing cross, w.c.
43. QUEEN VICTORIA STREET, E.C. BRIGHTON: ${ }^{135}$, NORTH STREET.

```
NEW YORK :
E. \& J.
I 888.
```

$$
\begin{aligned}
& \because \because \quad \because \quad \% \\
& \therefore \text { 呈 }
\end{aligned}
$$

TABLE OF CONTENTS．

Introduction Table for turning sidereal Time into Degrees Table for turning Degrees into Sidereal Time Sidereal Time at Mean Noon Constellations Star Magnitudes ． Number of the Fixed Stars． Distance of the Fixed Stars ． Double Stars Star Clusters Nebula Explanation of the Maps Description of the more interesting Fixed Stars， StarClusters and Nebulæ

Andromeda．

（Sheet II．，V．，VI．）
$\begin{aligned} & n \text { Variable ．} \\ & 116 \text { Nebula }\end{aligned} \quad: \quad: 11$
117 ，．．． 13
μ Double Star ：． 13
457 Star Cluster ．． 15
γ Triple Star ．．． 16
527 Nebula ．．． 16
575 ＂．．． 17
4954 ．，．．． 71
3050．Double Star ．． 71

Aquarius，The Water Bearer．

（Sheet XII．）

Argo navis，The Ship Argo．

（Sheet VIII．，IX．）
玉 1097 Quintuple Star ． 34
玉 1121 Double Star ．． 34
1551 Star Cluster ．． 34
1564 ，．． 35

1567 Nebula ．．． 35
1571 Star Cluster ： 35
5 Double Star ．．． 35
1630 Star Cluster ．． 36
1632 Star Nebula ．． 36

Aries，The Ram．

（Sheet II．，VII．）
y Double Star ．．． 15
λ ！！！ 15
£ 196 ，＂： 15
14 ．, ．．． 16
R Variable ．．． 16
30 Double Star ．．． 17
33 ＂：．． 17

Auriga，The Waggoner．
（Sheet I．，II．，III．）
4 Double Star ．．． 22
－Variable ．．． 22
996 Star Cluster ．． 22
₹ 645 Double Star ： 23
R Variable ．．． 23
a Capella ．．． 23
14 Triple Star ．．． 23
入＂．．． 24
1067 Star Cluster ：${ }_{24}$
₹ 681 Double Star ．． 24
1101 Star Cluster ． 24
1114 ，．．． 24
1119 ＂．．${ }_{24}$
1137 Nebula ： 25
1166 Star Cluster ：${ }_{25}$
26 Double Star ．．． 27
1295 Star Cluster（Sheet
XVIII．）．． 29
9 Triple Star ．．． 29
41 Double Star ．．． 29
₹ 872 ，．．． 30
66 ，．．． 31
1451 Star＂Cluster ：． 32

Bootes．

（Sheet III．，IV．，V．，X．）
1 Double Star ．． 47
3637 Nebula ．．．．． 47
－Double Star ．．． 47
T Variable ．．． 47
＊Double Star ．．． 47
\propto Arcturus ．．． 47
－Double Star ．．． 47
S Variable ．．． 47
玉 1850 Double Star ．． 47
R Variable ．．． 47
π Double Star ：． 47
$\boldsymbol{\text { Triple Star ．．．}} 48$
$\underset{\xi}{\text { Double Star } \quad!} \quad \therefore \quad . \quad 48$

£ 2790 Double Star	Tage 67
B	67
$\Sigma 2816$	68
S Yariable	68
μ	
4709 Star Cluster	68
ェ 2840 Double Star	69
π Triple Star	－ 70
o Double Star	
4957 Star Cluster	

Cetus，The Whale．

（Sheet YII．）
S Variable ．．． 11
138 Nebula ．．． 13
26 Double Star ．．． 13
42 ．．． 14
342 Nebula ．．． 14
361 ，．．． 15
χ Double Star ．．． 15
o Variable ．．．． 16
R ．．．．． 17
544 Planetary Nebnla ． 17
－Double Star ．．． 17
600 Nebula ．．． 17
604 ，．．． 17
91 Double Star ．．． 18
そ, ．．． 69
＂ 2872 ＂．．． 69
玉 2883, ．．． 69
इ 2893 ，，．．． 69
δ Variablo ．．．． 69
π Triple Star ．．． 70
－Double Star ．．． 70
4957 Star Cluster ．． 70

Columba，The Doye． （Sheet VIII．）
 Coma Berenices，Berenice＇s Hair．

（Sheet IV．，X．）
2 Deuble Star ．．．． 42
2752 Star Cluster ．． 42
2786 Nebula ．．． 42
2838 ＂．．． 42
12 Double Star ．．． 42
2890 Nebula ．：． 42
2946 ＂．．． 42
2972 ＂．．．． 43
17 Double Star ．．． 43
3043 Nebula ．．． 43
24 Double Star ．．． 43
3101 Nebula ．．． 43
3106 ，．．． 43
玉 1678 Donble Star ．． 44
35 ．＂． 45
3342 Nebula ．．． 45
42 Double Star ．．． 45
3453 Star Cluster
45

Corona borealis，The Northern

Crown．

（Sheet IV．，V．，VI．）
£ 1932 Double Star ．． 49
U Yariable ．．． 49

Crater, The Cup.

 (Sheet XII.)
Cygnus, The Swan.

(Sheet I., II., V., VI.)
β Variable
4511 Star Cluster
61
16 Double Star $\quad{ }_{62}$
4614 Nełula : . 62
17 Double Star . : 62
x Variable.

- 62
ψ Double Star . . . 63
4544 Star Clustcr . . 63
$32 \sigma^{2}$ Double Star
- 63
${ }_{4575}^{P}$ Sariable Star Cluster
- 64 49 Double Star - . 64
4600 Nebula
- 65

52 Double Star

- 65
T Variable .
- 65
λ Triple Star $\quad 65$
59 Double Star
f_{61}^{1} Triple Star
. 66
- 66

Nebula
66
4645 Star Cluster
66
τ Double Star
67
${ }_{4681}$ Star Cluster
67
67
Nova 1876

- 68
μ Quadruple Star
Delphinus, The Dolphin. (Sheet V., XII.)
4586 Nebula . . 64
β Triple Star . . . 65
a Multiple Star . . . 65
T Variable . . . 65
y Double Star . . . 65
4625 Nebula . . . 66
Draco, The Dragon.
(Sheets I., III., IV., V., VI.)
2024 Nebula . . . 39
$x^{4029} \quad$. . . 48

£ 1984 Double Star	Page 50
99	52
n \quad,	5
16,17	52
$\mu \quad$ "	4
\downarrow	
廿	56
${ }_{4373}$ Nebula ${ }^{\prime \prime}$	57
40, 41 Double Star	
39 b ",	58
4415 Nebula	58
φ Double Star	
£ 2403	59
4517 Star Cluster	
- Double Star	62
Equaleus, The (Sheet XI	Foal.
£ 2735 Double Star	66
1 Triple Star	
2 Double Star	66
ธ 2744	-66
y Triple Star -	- 67
β Multiple Star	- 67

Eridanus, The River

 Eridanus.(Sheet VII., VIII.)
12 Double Star . . . 18
692 Nebula . . . 18
709 ." . . 18
£ 422 Double Star . . 19
32 — . . 19
A ", . 20
826 Nebula . . 20
0^{2} Double Star . . . 21
55 " . . . 22
b " . . . 22

Gemini, The Twins.

(Sheet II., III., VIII.)
1325 Star Cluster . . 29
1360 . . . 29
n Variable". . . . 30
μ Double Star . . . 30
15 . 15 . . 30
r Triple Star 31

- Double Star . . . 31

38 " . . . 32
1467 Star Cluster . . 32
そ Variable . . . 32
R " . . . 33
1490 Star Cluster . . 33
1508
33
^ Double Ŝtar
d
1534 Star Cluster
a Double Star
1549 Star Cluster
S Variable.

Hercules.

> (Sheet I., IV., V., VI., XI.)
£ 2007 Double Star . 51

* ", . 51
${ }^{\gamma}$. . . 52
U Variable. . . . 52
$30, g$. . . . 52
m Double Star . . . 52
${ }_{\zeta}^{42} \quad " \quad . \quad . \quad: 52$
4230 Star
XVII., XVIII.).
4234 Nebula . . . 53
£ 2101 Double Star . . 53
4244 Nebula . . . 53
£ 2104 Double Star . . 53
S Variable. . . . 53
a , 54
Double Star . . . 54
4294 Star Cluster (Sheet ${ }^{\text {XV. }}$) ${ }^{54}$

68, u Variable . . . 55
ς Double Star . . . 55
ᄃ 2190 , . . . 55
83 " . . . 55
₹ 2215 , . . . 56
μ Triple Star . . . 56
4343 Nebula . . . 56
95 Double Star . . . 56
₹ 2277 , . . . 57
100 " . . 57
T Variable. . . 57
£ 2289 Double Star . . 57
110 " . . 59

Hydra.

(Sheet IX., X.)
$\Sigma 1245$ Double Star . . 36
" ${ }^{3}$ " . 37

${ }_{T}$ Variable . . . 37
T. 37
9 Double Star . . . 37
τ^{1}, . . . 33
2102 Nebula 39
Double Star . . . 41
3128 Nebula . . . 44
R Variable. : . 46

Lacerta, The Lizard.

(Sheet II., V.)
4755 Star Cluster (Sheet
XVII.) . . .

4773 ," . 69
8 Quadruple Star . . 69

- VI -

Lepus, The Hare.

(Sheet YIII.)
π Variable

- Double Star $\quad 22$
© Triple" Star 23 23

1112 Star Cluster
β Multiple Star .
a Double Star
45 Multiple Star.
γ Double Star

Leo, The Lion.

(Sheet III., IV., IX.)

- Double Star	38
1861 Nebula	38
1863	38
6 Double Star	38
7	38
n Tariable	38
\propto Regulus .	39
\% Double Star	39
49	39
2184 Nebula	39
2194 "	40
2203	40
2207	40
54 Double Star	40
2279 Nebula	40
2301	40
2352	40
2373	41
2377	41
- Double Star	41
τ \%	41
88	41
90	41
93	41
β Multiple Star	41

Leo minor, The Little Lion.
 (Sheet III., IV.)

1713 Nebula
37
R Variable
2104 Nebula 38
2104 Nebula . . . 39
2178 " . . . 39
2274 " . . . 40
2287 " . . . 40

Libra, The Balance.

(Sheet X., XI.)
α Double Star
Multiple Star 48
d Variable

- Triple Star 48
S Variable. 48

ェ 1962 Double Star
Lupus, The Wolf.
(Sheet X., XI.)

Page

Monoceros, The Unicorn.
(Shect VIII., IX.)
4 Triple Star . . . 30
5 Red Star . . . 30
8 Double Star . . . 30
T Variable . . . 30
1408 Star Cluster . . 30
1415
11 Quadruple Sta: . . 30
£ 921 Double Star . . 31
1424 Star Cluster . . 31
1425 Nebula . . . 31
14 Double Star . . . 31
1435 Star Cluster . . 3I
£ 950 Multiple Star . . 31
1440 Star Cluster . . 31
1453 ", . 32
$1465 \quad$ ", $\quad .32$
1474 ,, . 32
1483 ", . . 33
U Variable" . . . 34
1611 Star Cluster . . 35
£ 1183 Double Star . .. 36
29 Triple Star . . . 36
1637 Star Cluster . . 36

Ophiuchus.

(Sheet XI.)
¢ Double Star . . . 52
A 211 Star Cluster - 52
4211 Star Cluster . 52
4238

19 Double Star	Page 53
4256 Star Cluster	53
Nova of 1848	53
426:1 Star Cluster	54
4268	54
4269	54
4270	54
36 Domble Star	54
l Variable	54
	54
39 Donble Star	54
4287 Star Cluster	54
4296 Nebula	55
4302	55
$\Sigma 2166$ Double Star	55
Nova of 1604	55
$\Sigma 2173$ Double Star	55
$53 f$	5.5
54	55
4315 Star Cluster	55
61 Double Star	5)
4346 Star Cluster	56
67 Double Star	56
τ "	56
70	57
73	57
4390 Nebula	57
4110 Star Cluster	

Orion.

(Sheet II., III., VIII.)
905 Star Cluster . . 22
R Variable. . . . 22
$\Sigma 627$ Double Star . . 22
$96 / 3$ Red Star . . . 22
1005 Nebula . . . 23

- Double Star . . . 23

इ 652 , . . . 23
\& \quad. . . 23
B ., . . . 23
τ Multiple Star . . . 24
m Double Star . . . 24
n Triple Star . . . 24
γ Variable . . . 24
ψ^{2} Double Star . . . 24
31 ., . . . 25
A32 " . . . 25
33 . \quad. . . 25
λ Triple S̈tar $\quad . \quad .26$
$\Sigma 747$ Double Star . . 26
1179 Great Nebula . . 26
(Shect XVI.) . 27
Cluster .
118. Star Cluster . . 27

- Triple Star . . 27

1185 Nebula . . . 27
1193 Nebula around \&. . 27
σ Multiple Star . . 28
1225 Nebula . . . 28
ζ Triple Star . . . 28
1226 Nebula - • ${ }^{28}$
1227 " (Shect XVIII.) 28

1267	
52	Double Star . . .

$\Sigma 816$	$\begin{array}{r}\text { Page } \\ \hline 29\end{array}$
1810 Star Cluster	
$\boldsymbol{\alpha}$ Variable．	29
1361 Star Cluster	（She
XV．）	．． 29
£ 855 Double Star	29
1376 Star Cluster	30

Pegasus．

（Sheet II．，VI．，XII．）
γ Double Star
1383 Star Cluster $\quad: \quad 11$
30
1 Double Star ．．． 67
4670 ，．．． 67
3 ＂．．． 68
i＂．．． 68

20 ＂．． 68
33 Triple Star ．．． 69
37 Double Star ．．． 69
n ．．． 70

4815 Nebula ．． 70
ξ Double Star ．． 70
β Variable ．．． 70
S＂．．． 70
5023 Star Cluster ．． 71

Perseus．

（Sheet I．，II．，III．，V．，XVII．）
385 Nebula ．．． 15
422^{-}＂．．． 15
512 ＂（Shect XVII．） 16
521 ＂，．． 16
584 Star Cluster．．． 17
n Double Star ．．． 17
¢ Variable ．．． 18
β B \quad ． 18
658 Star Cluster ．． 18
£ 369 Double Star ．． 18
R Variable ．． 18
717 Star Cluster ．． 19
－Double Star ．．． 19
775 Star Cluster ．． 19
そ Quintuple Star ．． 19
－Double Star ．．． 20
809 Star Cluster ．． 20
μ Triple Star
20
820 Star Cluster ．． 20

831

乏 533 Double Star
さ 553
m＂．． 21

Pisces，The Fish．
（Sheet II．，VI．，VII．，XII．）
35 Double Star
.11

51	$"$	$:$	$:$	11
55	$"$	$:$	\vdots	12
65	$"$,	\vdots	\vdots	13
66	$"$	$:$	$:$	13
ψ^{1}	$"$	$:$	\vdots	13
77	$"$	$:$	14	
g	$"$	$:$	$:$	14

Piscis austrinus，The Southern Fish．

（Sheet XII．）

Sagitta，The Arrow．

 （Sheet V．，VI．，XII．）－Double Star ．．． 61
ζ Triple Star ．．． 62
4520 Star Cluster ．． 62
13 Double Star ．．． 63
9 Triple Star ．．． 63
4572 Nebula ．．． 64

Sagittarius，The Archer．

（Sheet XI．，XII．）
X Variable
56
4355 Nebula（Sheet XV．） 56
4359 Star Cluster ．． 56
436
4367 ＂\quad ． 56
W Variable ．．． 57
4376 Star Cluster ．． 57
4388
μ Quintuple Star ： 57
4397 Star Cluster ．． 57
4401 ，$\quad 58$
4403 Nebula（Sheet XVI．） 58
4406 Star Cluster ．． 58
21 Double Star ．．． 58
U Variable ．．． 58
M 25 Star Cluster ．． 58
4424 ．． 59

4442 Nebula ．．． 60
54 Double Star ．．． 61
4510 Nebula ．．． 61
4543 ，．．． 63

Scorpio，The Scorpion．

（Sheet X．，XI．）
ξ Triple Star ．．． 50
ß＂．．． 50
，Double Star ．．． 51
4173 Star Cluster（Sheet XVIII．）．．． 51
n Variable ．．． 51
S ，．． 51
σ Double Star ：． 51
4183 Nebula
a Antares
4261 Star Cluster
Scutum Sobieski， Sobieski＇s Shield．
（Sheet XI．）
4400 Star Cluster ．． 58
4426 ＂

4429 Star Cluster	Page 59
4432	59
n Variable＂	59
4437 Star Cluster	60
4441 Nebula	

Serpens，The Serpent．

（Sheet IV．，V．，X．，XI．）

4083 Star Cluste	49
5 Double Star	49
$\Sigma 1931$	49
S Variable	49
$\delta^{\text {d }}$ Double Star	49
a＂	50
	50
R Variable	50
49 Double Star	51
＂	55
59a	58
9	

Sextans，The Sextant．

（Sheet IX．）
9 Double Star ．．． 39
2008 Nebula ．． 39
2038 ，＂．． 39
35 －Double Star ．．． 39
41 Triple Star ．．． 40

Taurus，The Bull．

（Sheet II．，III．，VII．，VIII．）
7 Triple Star ．．． 19
之 430 ．，．． 19
768 Nebula ．．． 19
${ }^{n}$ Quadruple Star（Sheet 19
30 Double Star ．．． 19
之 453 ＂．．． 19
λ Variable ．．． 20
之 495 Double Star ．． 20
810 Nebulous Star ．． 20
47 Triple Star ．． 20
4 Variable ．．． 20
φ Double Star ．．． 21
χ ，$x_{T} \cdot \frac{21}{}$
T Variable ．．． 21
839 Variable Nebula ．． 21
${ }^{x}$ Double Star ．．． 21
¿ 548 ，．．． 21
R Variable ．．． 21
9^{1} Double Star ．．． 21
80 ，．．． 21
a Aldebaran ．．． 21
83 Double Star ．．． 21
o＂．．． 21
т \quad＂• ． 22
V Variable ．．． 22
1030 Star Cluster ．． 23
ミ 674 Double Star ．． 24

111	$"$	$:$	24
118	$"$	$:$	25
$\Sigma 730$	$"$	$:$	25

- VIII -

 INTRODUCTION.

\qquad
1.

THE starry heaven seems to an observer to be a hollow sphere of which one-half lies above and the other below the horizon. The stars seem to be attached to this hollow sphere, and to make with it a daily revolution around the earth. To fix the position of any of the heavenly bodies upon the celestial vault, certain imaginary lines are made use of. The principal lines employed for this purpose correspond with the parallels of latitude and meridians of longitude upon the sphere of the earth, and give the Right Ascension (longitude) and Declination (latitude) of all heavenly bodies. As the meridians of longitude are reckoned eastwards round the earth from a conventionally fixed meridian (Greenwich), and divide the circumference of the earth into 360°, so the celestial sphere is similarly divided by the meridians of Right Ascension, which start from the first point of Aries, and reckoned in an eastward direction, divide the celestial equator into 360°. Further, as places on the earth north or south of the terrestrial equator are reckoned by degrees of latitude up to 90° towards either pole, so the Declination of heavenly bodies is reckoned in degrees north or south of the celestial equator to the northern or southern celestial poles, which have each 90° of Declination. Thus, just as one is enabled to determine the position of a spot upon the earth by its latitude and longitude, so one can find on the celestial sphere the place of a heavenly body by its Right Ascension and Declination.

The term Right Ascension is expressed shortly by R.A., and Declination by D, which by the addition of the + sign is further meant to designate northerly Declination, and by the sign southerly Declination.

The time required for a complete revolution of the celestial sphere is called a Sidereal day. This day begins at the instant in which the first point of Aries passes the meridian of the place of observation. The sidereal day is divided into 24 hours. (Numbered 1, 2, 3,-to .24), each hour into 60 minutes, each minute into 60 seconds.

The sidereal day is $3^{\mathrm{m}} 55 \cdot 9^{\circ}$ shorter than the mean solar day, and, therefore, the first point of Aries, or any fixed star, passes the meridian daily about four minutes earlier than it did the day previously. The beginning of the sidereal day is not, therefore, fixed to any definite hour of mean time, but during the year runs through all the hours of the civil day. As the sidereal day is about four minutes shorter than the mean solar day, so the hours and minutes of the sidereal day are shorter than the corresponding periods of the civil day, as this table shows :

Hours. sidereal Time $=$ Mean Time.				Minutes.					
				sidereal	- M	an Time.	creal	- Mea	Time.
$1^{\text {h }}$	$0^{\text {h }}$	59^{m}	$50^{\text {s }}$	1	$0^{\text {m }}$	$59.8{ }^{\text {s }}$	20		$56.7^{\text {8 }}$
2	1	59	40	2	1	59.7	30		55.1
3	2	59	31	3	2	59.5	40		53.6
4	3	59	21	4	3	59.3	50		52.0
5	4	59	11	5	4	59.2	60		50.2
6	5	59	1	6		59.0			
7	6	58	51	7		58.9			
8	7	58	41	8		58.7			
9	8	58	31	9		58.5			
10	9	58	21	10		58.4			
20		56	43						
24		56	4						

If on any day the first point of Aries, of which the R.A. is 0°, passes the meridian of an observer at noon, an hour after noon, a point of the heaven of R.A. 15° will be on the meridian, after two hours a point of R.A. 30°, after three hours a point of 45° etc. The Right Ascension of a star, or its distanee from the first point of Aries, instead of being expressed in degrees, can thus be indicated thy thenumber of hours, minutes, and seconds, which have elapsed from the time of culmination of the first point of Aries until the time this star passes the meridian, or culminates. Thus instead of expressing the Right Ascension of the bright star Vega by $277^{\circ} 30^{\prime}$ we may say that it amounts to $1830^{\mathrm{m} .}$ For, as 360° pass the meridian in 24 hours, in one hour 15° will pass, and in 1 time minute 15 minutes of are, and in 1 time second, 15 are seconds. Thus 277° 30^{\prime} turned into time are equal to $18^{\mathrm{h}} 30^{\mathrm{m}}$.

In many star maps Right Ascension is expressed in degrees of an are only. The practice of astronomers, however, without exception, is to reckon the R.A. in time only. Therefore in the present atlas the parallels for Right Λ scension are given in hours and parts of an hour.

In case it is required to turn time into are measurement, the following table will readily serve the purpose.

Table for Turning Sidereal Time into Degrees.

Hours.	Degrees.	Minutes.	Degrees.	Minutes.	Degrees.
$1{ }^{\text {h }}$	15°	$1^{\text {m }}$	$0^{\circ} 15^{\prime}$	$31^{\text {m }}$	$7^{\circ} 45^{\prime}$
2	30	2	$0 \quad 30$	32	80
3	45	3	045	33	815
4	60	4	10	34	$8 \quad 30$
5	75	5	115	35	845
6	90	6	130	36	90
7	105	7	145	37	$9 \quad 15$
8	120	8	20	38	$9 \quad 30$
9	135	9	215	39	$9 \quad 45$
10	150	10	230	40	100
11	165	11	245	41	1015
12	180	12	30	42	$10 \quad 30$
13	195	13	315	43	$10 \quad 45$
14	210	14	330	44	110
15	225	15	345	45	1115
16	240	16	40	46	11. 30
17	255	17	415	47	1145
18	270	18	430	48	120
19	285	19	445	49	$12 \quad 15$
20	300	20	50	50	1230
21	315	21	515	51	1245
22	330	22	530	52	130
23	345	23	545	53	1315
24	360	24	60	54	1330
		25	$6 \quad 15$	55	$13 \quad 45$
		26	$6 \quad 30$	56	140
		27	$6 \quad 45$	57	$14 \quad 15$
		28	70	58	1430
		29	715	59	1445
		30	730	60	150

The sidereal day begins, as already mentioned, at the instant in which the first point of Aries passes the meridian of the observer. The Sideroal time at any moment is therefore equal to the distance, expressed in time, of the first point of Aries westwards from the meridian ; in

Table for Turning Degrees into Sidereal Time.
Degrees.

		0°		$1{ }^{\circ}$		2°		3°		4°		5°		6°		7°		8°		9°
			¢	m	h	m	h		${ }^{\text {b }}$		-	m	h		${ }^{\text {a }}$		${ }^{\text {h }}$	m	4	m
0.	0	0	0		0		0	12			0	20		24		28	0		0	36
10	0	40	0	44	0	48	0	52	0		1	0	1	4		8	1		1	16
20	1	20	1	24	1	28	1	32	1	36	1	40	1	44	1	48	1		1	56
30	2		2	,	2		2	12	2	16	2	20	2	24	2	28	2		2	36
40	2	40	2	44	2	48	2	52	2		3	0				8	3		3	16
50	3	20	3	24	3	28	3	32	3	36	3	40	3	44	3	48	3	52	3	56
60	4	0	4	4	4	8	4	12	4	16	4	20	4		4	28	4	32	4	36
70	4	40	4	44	4	48	4	52	4	56	5	0	5	4	5	8	5	12	5	16
80	5	20	5	24	5	28	5	32	5	36	5	40	5	44	5	48	5	52	5	56
90.	6	0	6	4	6	8	6	12	6	16	6			24			6	32	6	36
100	6	40	6	44	6	48	6	52	6	56		0		4		8	7	12	7	16
110	7	20	7	24	\%	28	7	32	7	36	7	40	7	44	7	48	7	52	7	
120	8	0	8	4	8	8	8	12	8	16	8	20	8	24	8	28	8	32	8	36
130	8	40	8	44	8	48	8	52	8	56	9	0	9	4	9	8		12	9	16
140	9	20	9	24		28	-	32	9	36	,	40	9	44		48		52	9	56
150	10	0	10	4	10	8	10	12	10	16	10	20	10	24	10	28	10	32	10	36
160	10	40	10	44	10	48	10	52	10	56	11	0	11	4	11	8	11	12	11	16
170	11	20	11	24	11	28	11	32	11	36	11	40	11	44	11	48	11	52	11	56
180	12	0	12	4	12	8	12	12	12	16	12	20	12	24	12	28	12	32	12	36
190	12	40	12	44	12	48	12	52	12	56	13	0	13	4	13	8	13	12	13	16
200	13	20	13	24	13	28	13	32	13	36	13	40	13	44	13	48	13	52	13	56
210	14	0	14	4	14	8	14	12	14	16	14	20	14	24	14	28	14	32	14	36
220	14	40	14	44	14	48	14	52	14	56	15	0	15	4	15	8	15	12	15	16
230	15	20	15	24	15	28	15	32	15	36	15	40	15	44	15	48	15	52	15	56
240	16	0	16		16	8	16	12	16	16	16	20	16	24	16	28	16	32	16	36
250	16	40	16	44	16	48	16	52	16	56	17	0	17	4	17	8	17	12	17	16
260	17	20	17	24	17	28	17	32	17	36	17	40	17	44	17	48	17	52	17	56
270	18	0	18	4	18	8	18	12	18	16	18	20	18	24	18	28	18	32	18	36
280	18	40	18	44	18	48	18	52	18	56	19	0	19	4	19	8	19	12	19	16
290	19	20	19	24	19	28	19	32	19	36	19	40	19	44	19	48	19	52	19	56
300	20	0	20	4	20	8	20	12	20	16	20	20	20	24			20	32	20	36
310	20	40	20	44	20	48	20	52	20	56	21	0	21	4	21	8	21	12	21	16
320	21	20	21	24	21	28	21	32	21	36	21	40	21	44	21	48	21	52	21	56
330	22	0	22	4	22	8	22	12	22	16	22	20	22	24	22	28	22	32	22	36
340	22	40	22	44	22	48	22	52	22	56	23	0	23	4	23	8	23	12	23	16
350	23	20	23	24	23	28	23	32	23	36	23	40	23	44	23	48	23	52	23	56

Minutes.

	0^{\prime}		$1{ }^{\prime}$		$2{ }^{\prime}$		3^{\prime}		4^{\prime}		5^{\prime}		6^{\prime}		$7{ }^{\prime}$		8^{\prime}		9^{\prime}	
	m	-	m	-	m	.	m	.	m	.	m		m	.	m	.	m	,	m	*
0^{\prime}	0	0	0	4	0	8	0	12	0	16	0	20	0	24	0	28	0	32	0	
10	0	40	0	44	0	48	0	52		56		0		4	1	8	1	12	1	
20	1	20	1	24		28		32		36		40	1	44	1	48	1	52	1	
30	2	0	2	4	2	8		12		16		20	2	24	2	28	2	32	2	
40	2	40	2	44	2	48	2	52	2	56	3		3	4	3	8	3		3	16
50	3	20	3	24	3	28	3	32	3	36	3		3	44	3		3			

other words it is equal to the R．A．of the point of the celestial sphere then passing the meridian． Conversely the Right Ascension of a fixed star expressed in hours and parts of an hour is equal to the sidereal time of its passage through the meridian．

In most eases the observer requires to find out the mean or civil time of the place in which he is at the monent when a certain star，whose Right Ascension is given，is on the Meridian． This can easily be ascertained with the help of the following table，which gives the approximate sidereal time of mean noon for every day in the year．If the exact sidercal time be required，the Nautieal Almanack for the year must be consulted．

Sidereal Time at the moment of Mean Noon．

	告		免	宽	复	号	号	4	，		勉	䬰	
	${ }^{1} \mathrm{~m}$	b m	h m			n		h m					
1	1845	2047	2238	040	238	441	639	841	1043	1242	1444	1642	1
2	1849	2051	2242	044	242	444	643	845	1047	1245	1448	1646	2
3	1853	2055	2246	048	246	448	647	849	1051	1249	1452	1650	3
4	$18 \quad 57$	$20 \quad 59$	2250	052	250	452	651	853	1055	1253	1456	$\begin{array}{ll}16 & 54\end{array}$	4
5	$19 \quad 1$	213	$22 \quad 54$	056	254	456	655	857	1059	1257	150	1658	5
6	$19 \quad 5$	217	2258	10	258	50	659	91	113	131	15	$17 \quad 2$	6
8	$\begin{array}{lll}19 & 9\end{array}$	2111	231	14	32	5	72	95	117	$13 \quad 5$	157	$17 \quad 6$	7
8	1913	2115	$23 \quad 5$	18	$3{ }^{3} 6$	5	76	$\begin{array}{ll}9 & 9\end{array}$	1111	129	1511	1710	8
9	1917	2119	$23 \quad 9$	112	310	512	710	913	1115	1313	1515	1714	9
10	1921	2123	2313	116	314	516	714	917	1119	1317	1519	1718	10
11	1925	$21 \quad 27$	2317	119	318	520	718	920	1123	1321	$15 \quad 23$	1721	11
12	1929	2131	2321	123	322	$5 \cdot 24$	722	924	1127	1325	1527	1725	12
13	$\begin{array}{lll}19 & 33\end{array}$	2135	$\begin{array}{ll}23 & 25 \\ 23 & 29\end{array}$	127	326	528	726	928	$\begin{array}{lll}11 & 31 \\ 11 & 35\end{array}$	1389	1531	1729	13
14	1936	2139	2329	131	330	532	730	932	1135	1333	1535	1733	14
15	1940	2143	2333	135	334	536	734	936	1138	1337	1539	1737	1.5
16	1944	2147	2337	139	337	540	738	940	1142	1341	1543	1741	16
17	1948	2151	2341	143	341	544	742	944	1146	1345	1547	1745	17
18	1952	2154	2345	147	345	548	746	948	1150	1349	1551	1749	18
19	1956	2158	2349	151	349	552	750	952	1154	1352	1555	1753	19
20	$20 \quad 0$	$22 \quad 2$	2353	155	353	555	754	956	1158	1356	$15 \quad 59$	1757	20
21	$20 \quad 4$	$22 \quad 6$	$23 \quad 57$	159	357.	559	758	100	122	140	163	181	21
22	208	2210						$10 \quad 4$	126	$14 \quad 4$	$16 \quad 7$		22
23	$20 \quad 12$	2214	0	27	45	67	86	108	1210	148	1610	189	23
24	2016	2218		211		611	89	1012	1214	1412	1614	1813	24
25	$20 \quad 20$	2222	012	215	413	615	813	1016	1218	1416	1618	1817	25
26	2024	2226	016	219	417	619	817	1020	1222	1420	1622	1821	26
27	2028	2230	020	223	421	623	821	1024	1226	1424	1626	1825	27
28	2032	2234	024	226	425	C 27	825	1027	1230	1423	1630	$18^{*} 28$	28
29	2036		028	230	429	631	829	1031	1234	1432	1634	1832	29
30	2040		032	234	433	635	833	1035	1238	1436	1648	1836	30
31	12043		036		437		837	1039		1440		1840	31

$-5-$
For instance, if it be required to find out at what hour of the day on the 15th April, the Star Castor, whose Right Ascension is $7^{\mathrm{L}} 27^{\mathrm{m}}$, is on the Meridian :

Sidereal time of Meridian passage $=$ Right Ascension $=7^{\mathrm{L}} 27^{\mathrm{m}}$
Sidereal time at mean noon on 15th April $=1^{\text {h }} 35^{\mathrm{m}}$
Difference: $5^{\mathrm{h}} 52^{\mathrm{m}}$
It must be borne in mind that the difference is expressed in sidereal hours, 24 of which are $3^{\mathrm{m}} 55.9^{\mathrm{s}}$ shorter than 24^{h} of mean time. It follows, therefore, that $5^{\mathrm{h}} 52^{\mathrm{m}}$ sidereal time are $57^{\text {", }}$, or speaking roughly, 1^{m} shorter than the corresponding mean time, and this must be subtracted from the result given above. Castor will therefore be on the Meridian at $5^{\mathrm{h}} 51^{\mathrm{m}}$.

Constellations and the Names of Stars.

Already in the earliest ages the chief fixed stars had received names, and many configurations fancifully representing natural or mythical objects, were grouped into constellations. In the 16th century, when more exact information had been obtained with regard to the southern heavens, constellations were duly marked out there also; nay, even in the last century several new constellations were added to the number, and introduced into astronomical maps. That there was no great resemblance between the constellations and the objects whose names they bore, it is needless to say. The practice which obtained in the old star atlases, of surrounding the stars composing a constellation with an outline of the person or object which the constellation was supposed to represent, was, therefore, purely fanciful. Until quite recently the greatest uncertainty prevailed, not only with regard to the boundaries, but even as to the number of the constellations. It was finally, however, decided that only those constellations should be recognised which are to be found in Argelander's Neue Uranometrie.

The present atlas will therefore be found to contain only those constellations which are given by Argelander, the fantastic figures suggested by their names being omitted.

The following is a list of the constellations visible from our earth, which are to be found in Argelander's Uranometrie.

Andromeda, Andromeda.
Aquarius, The Water-carrier.
Aquila, The Eagle.
Argo navis, The Ship Argo.
Aries, The Ram.
Auriga, The Waggoner.
Bootes, Bootes.
Camelopardalis, The Giraffe.
Cancer, The Crab.
Canes venatici, The Hounds.
Canis major, The Great Dog.
Canis minor, The Little Dog.
Capricornus, The Goat.
Cassiopeia, Cassiopeia.
Centaurus, The Centaur.
Cepheus, Cepheus.

Cetus, The Whale.

Columba, The Dove.
Coma Berenices, The Hair of Berenice.
Corona borealis, The Northern Crown.
Corous, The Crow.
Crater, The Cup.
Cygnus, The Swan.
Delphinus, The Dolphin.
Draco, The Dragon.
Equileus, The Foal.
Eridanus, The River Eridanus.
Gemini, The Twins.
Hercules, Hercules.
Hydra, The Hydra.
Lacerta, The Lizard.
Leo, The Lion.

Leo minor, The Little Lion.
Lepus, The Haro.
Libra, The Balance. .
Lupus, Tho Wolf.
Lynx, The Lynx.
Lyra, The Lyre.
Monoceros, The Unicorn.
Ophinchus, Ophiuchus.
Orion, Orion.
Pegasus, Pegasus.
Persers, Perseus.
Pises, The Fish.
Piscis austrinus, The Southern Fish.

Sayitta, The Arrow.
Sagittarius, The Archer.
Scorpio, The Scorpion.
Seutum Solieski, The Shield of Sobieski.
Serpens, The Serpent.
Sextans, The Sextant.
Taurus, The 13ull.
Triangulum, The Triangle.
Ursa major, The Great Bear.
Ursa minor, The Little Bear.
Virgo, The Virgin.
Vutpeculla, 'The Little Fox.

The stars of the greatest magnitude in each constellation were in former times distiuguished by individual names. Thus, the star of the greatest magnitude in the Great Dog is called Sirius; the star of the greatest magnitude in the Waggoner is called Capella, and so on. At the present day, however, the individual stars in each constellation are indicated by letters of the Greek or Latin alphabet in accordance with a system introduced by Bayer. Thus Sirius is described as α in the Great Dog, Rigel as β in Orion. The lesser stars are generally indicated by the numbers assigned to them in a catalogue, in which their positions are given by their Right Ascension and Declination. The catalogue most generally in use for stars which are visible to the naked eye, is that of the second edition of Flamsteed's Historia Coelestis which appeared in 1725. The figures affixed to the majority of the stars in the present work are those of Flamsteed. At the same time, there are many stars faintly visible to the naked cye which have not been catalogued by cither Bayer or Flamsteed. These stars are to be found in other catalogues, but they are not specially numbered in this atlas, except where they occur in Struve's catalogue of Double stars. In the case of these stars, the number assigned to each in Struve's cataloguc has been inserted, the letter Σ being prefixed.

Magnitudes of the Stars.

The stars are divided into various classes of magnitude according to their apparent brilliancy; thus the most brilliant stars are said to bo of the first magnitude; the least brilliant of those that can be discerned by the naked eye on a clear night are said to be of the sixth magnitude. The arrangement of all the stars visible to the naked eye into these six magnitudes is principally based on the estimates formed by Argelander, Heis, Behrmann, Gould, and Houzeau. Light measurements recently carried out by the aid of photometrical apparatus have proved that the estimate of magnitudes by Argelander's method is fairly trustworthy, and that in general, for the stars visible to the naked eye, each succeeding magnitude after the first indicates the possession of two-fifths of the light of the preceding one.

By the aid of the telescope, and according to its optical powers, stars of still lower magnitude become visible. According to test experiments, a telesoope with an objective glass of $\frac{1}{2}$ an inch aperture will show stars of the 7th magnitude. Au objective of 1 in., stars of the 9 th magnitude ; one of 2 in., stars of $10 \frac{1}{2}$ magnitude; one of 3 in ., stars of the 11 th magnitude; one of 4 in ., stars of $11 \frac{1}{2}$ magnitude ; of 5 in., those of the 12 th magnitude ; of 6 in ., those of $12 \frac{1}{2}$ maguitude, \&e., \&e.

It is to be remarked, however, that the estimation of the magnitude of faint stars is very uncertain. Thus Struve designates the faintest companions of double stars which he could see through the 12 -inch refracting telescope of Dorpat as of the 12 th magnitude, which according to Argelander's scale would be of the 14th magnitude, and judged by John Herschel would be classified with stars of the 20th magnitude. These discrepancies among observers are not very perceptible in regard to stars up to the 10th magnitude, and they may therefore be disregarded by observers who employ telescopes of only moderate power.

Number of the Fixed Stars.

The most cursory survey of the heavens shows that, generally, the fainter the stars are, the more numerous they appear. From Argelander's observations it appears that in the celestial sphere north of the equator there are

Beyond the 9.5 magnitude the stars increase in number so much that it is no longer possible to observe them individually or to number them. The desire and the need to place upon our star maps the faintest stars, has in the meantime led to the employment of photography for the purpose, and as a result we are now able to map out the celestial spaces and to give therein stars which approach the limit of visibility in our greatest telecopes.

The first experiments in this line attended by successful results were carried out at the Paris Observatory by the brothers Henri. With the aid of an object glass of $6-\mathrm{in}$. aperture, expressly constructed for this purpose, they were able to photograph several star clusters, in which stars even of the 12th and 13th magnitude became visible upon the plate. These results led to the construction of a larger instrument of 340 millimetres aperture and 3 to 4 metres focus. This was applied to a large ordinary telescope which served during the time of exposure to keep one and the same point of the heavens continually in the field. The result surpassed all expectation, for stars up to the 16 th magnitude were successfully photographed-stars which were so faint that it was impossible to see them by the eye through the same telescope. Here, one might say, in the proper sense of the word, was an astronomy of the invisible, and it must have been with a peculiar joy that the observers saw upon the photographic plate pictures of stars which since the beginning of things had never been revealed to human eye. In order to photograph such faint stars long exposure was necessary, namely one hour and twenty minutes, while stars of the first magnitude gave forth their image in the 200th part of a second.

Variable Stars.

Certain fixed stars exhibit a periodical change in their brightness which in some cases occurs with great regularity, but in the majority of instances more or less irregularly. The first discovery of this variability was made by David Fabricius in the year 1596 in the case of the star O in the Whale. This star appeared on the 13th August of that year to be of the 3rd magnitude, whilst in the October following it was no longer visible. That this was a case of variability was first recognised by Holwarda in the year 1636, and the star received, therefore, the
name Mira, the wonderful. Since this time numerous variable stars have been discovered, the latest list, drawn up by C. Pickering, embracing somewhere about 200. According to the kind and manner of variability these stars have been divided into five classes.

1. The so-called new stars (Novec) which burst out suddenly and vanish away slowly.
2. Stars of great variability within the space of several months. These stars vary by several magnitudes, being often visible in maximum to the naked eye, whilst in minimum they are frequently not within the scope of powerful telescopes.
3. Stars of slight and irregular variability which have no recognisable fixed period.
4. Stars of fairly regular variability whose periods are of a few weeks only.
5. Stars whose variability is confined to a few hours, and which shine during long periods with a constant light. These are called variables of the Algol type, Algol having been the first discovered of the class.

In the lists and upon the star maps the variables are distinguished by the letter R , provided they had not already been indieated by Greek letters before they were found to be variable.

In reforence to the causes which bring about this variability there is great obscurity.* In the case of any star of the Algol type one is led to think of the periodical passage of a dark planet between the star and us, in other words to regard it as a partial eclipse of the star. Where the periods of variability are long and irregular the causes are very obscure. As to the new stars (Nove), the sudden outbursts and slow fading away of any one of these seems to indicate some kind of great catastrophe, probably a collision with another cosmical mass.

Distances of the Fixed Stars.

The distances of the fixed stars from our earth are without exception so considerable that up to the present it has been possible only in a few instances to obtain a substantial value for their parallax. From this it appears that even the nearest fixed star is still four billions of miles away, and one must conclude, on the ground of analogy, that the faintest stars which can be seen by the improved teleseopes of to-day are many hundreds, or even thousands of billions of miles distant. \dagger

Double Stars.

If ono survey the heaven with a telescope one meets frequently twin stars which lie so near to each other that they can be separated only by a glass of a certain power. These are called

[^0]| 61^{1} Cygni | $0.4280 \pm 0 \cdot 0] 180$ | a Cassiopeix | $0 \cdot 072 \pm 0^{\prime \prime} \cdot 042 *$ |
| :---: | :---: | :---: | :---: |
| 61^{2} Cygni | 0.4353 ± 0.0152 | β Cassiopeix | $0 \cdot 187 \pm 0.039^{*}$ |
| μ Cassiopeix | 0.0356 ± 0.0250 | \% Cassiopeix | <0.05 $\pm 0.047 *$ |

Double Stars. The brightest of the pair is called the "primary," the other its "companion." Frequently, however, both stars are equally bright. The place of the companion in relation to the primary is expressed by distance and angular position.

By distance is meant merely the apparent space which separates the companion from its primary. The appearance of nearness is often owing to the two stars being in almost the same line in regard to the spectator, while their real distance from each other may be immensely great. There are, however, numerous instances in which there is a real propinquity. In these cases the angle of position varies in such a manner as to indicate a motion of revolution round a common centre.* Recent observations, especially those made since the time of W. Herschel and F. W. Struve, have proved that many double or multiple stars possess a physical connection with each other.

The angle of position is the angle which a line drawn from the companion to its primary forms with the latter's circle of Declination. The angle of position is calculated from north through east to south and west.

The number of Double Stars is considerable, about 7,000 being known at the present time. There are also triple, quadruple and quintuple stars, but their number is not large.

The primary and companion are not infrequently of different colours; white and blue, yellow and blue, and green and blue stars being found together. Except in a few cases, however, these colours are only faintly visible, and it requires a certain amount of practice and a powerful telescope to be able to distinguish them.

Star Clusters.

Groups of stars collected more or less closely together in a small space are called starclusters. Some few star-clusters can be distinguished, though imperfectly, with the naked eye, as for instance, the Pleiades in Taurus and a cluster in Cancer, but generally they can be clearly seen through the telescope only. Indeed many of them appear misty and nebulous even in telescopes of ordinary size, a powerful instrument being required to resolve them. Most star clusters seem to be globular in shape, with a strong condensation towards the centre. Frequently the stars in the centre of a cluster are crowded so closely together that they seem a nebulous mass, around which the external stars are collected.

The relative positions of the various stars in these star clusters have been decided by exact measurement in a few cases only; but the recent strides that have been made in the application of photography to astronomical observations lead us to hope that we shall ere long be able to obtain records of their most mirute details. We shall thus by the comparison of photographs taken at intervals of sufficient time, arrive at valuable information with regard to the relative motions of the component stars of these clusters.

Nebulæ.

Nebulæ are among the most remarkable objects to be found in space, but the majority of them cannot be studied in detail except by the aid of the most powerful telescopes. At the present day upwards of 6,000 Nebulæ are known to astronomers. John Herschel prepared a general catalogue containing 5079 Nebulw and Star clusters.

For the sake of brevity the Nebule are usually distinguished by the numbers assigned to them in Herschel's catalogue, and this course has been followed in the present work, where the numbers are accompanied by the letters G. C. (General Catalogue).

[^1]Whilst most Nebulæ cannot be clearly observed except with a powerful telescope, there are several hundreds, however, which may be studied on a clear night with an ordinary glass, if the weakest power be employed. Viewed in detail, it will be seen that their shapes are various ; some round or elliptieal, some spindle-shaped, some like planetary disks (Planetary Nebula), others ring shaped (Annular Nebulce), others spiral (Spival Nebulce), while many are quite irregular in outline.

The Spectroscope shows that the Nebulro are masses of incandeseent gas* in which hydrogen and nitrogen play an impertant part. Possibly in these glowing masses we have before us the germs of future worlds, or it may be in some cases the disintegrated remains of former solar systems.

Explanation of the Maps.

The general maps in this atlas include that portion of the heavens which is visible in central Europe, and they cover as far as 33° South Dicliuation. The stars are divided by a system of conventional signs into six classes of magnitude according. to their apparent brilliancy. The system of numbering adopted is, as a general rule, that of Bayer, by means of the small letters of the Greek and Latin alphabets. Such variable stars as are not given by Bayer, are marked, as is usual, by the capital letters of the Latin alphabet, beginning with \mathbf{R}, the word yar being added. A number of especially interesting variable stars, which at their maximum do not attain to the sixth magnitude, are also given. 'These' stars are distinguished by a small circle. Stars catalogued by Struve as Double Stars, if they have not been noted by Bayer, bear the number they possess in Struve's catalogue with the letter Σ prefixed; all other numbers attached to stars are those of Flamsteed's catalogue.

Star clusters and Nebulæ are distinguished by small circular groups of dots, and the accompanying number is that assigned to each in Herschel's General Catalogue. Lastly, the boundary lines of the various constellations are taken from Argelander.

Description

Of the more interesting Fixed Stars, Star Clusters, and Nebulæ contained in the Maps of this Atlas.

The following list, in which the various stars, etc., are arranged in order of Right Ascension, gives a fairly complete account of what is scientifically known at the present time of each object upon the Maps. To find in this list any star or nebula contained in the Maps, it is only necessary to take the approximate Right Ascension of the object from the Map and also its number or letter. These will indicate, without trouble, the object in the descriptive Catalogue. The Right Ascension and Declination here given are those for the year 1880, North Declination is shown by the sign + , South Declination by the sign -

The Nautical Almanaek furnishes the annual variation in Right Ascension of the principal stars, and from this the Right Ascension for any year can be readily calculated.

[^2]| $\begin{gathered} \text { Right } \\ \text { Ascension } \\ 1850 \text {. } \end{gathered}$ | Declination 1850 | |
| :---: | :---: | :---: |
| $0^{\text {h }} \quad 3^{\text {m }}$ | $+58^{\circ} 29^{\prime}$ | β Cassiopeiæ. This star, 2.5 mag., has at 5^{\prime} distance a faint companion of 11 mag. Burnham, who observed this star with the 18 -inch refractor at Chicago, states that he saw more than a dozen very faint stars nearer to the primary than this companion. (See note p, 8.) |
| $0^{\mathrm{h}} \quad \mathrm{i}^{\mathrm{m}}$ | $+14^{\circ} 31^{\prime}$ | γ Pegasi. 2.5 mag., with two faint companions, 11 and 11.5 mag. respectively. The primary is red in colour, and probably to a slight extent variable. |
| $0^{\text {h }} \quad 99^{\text {m }}$ | $+8^{\circ} 9^{\prime}$ | 35, Piscium. A double star, primary 6 mag., companion 7.8. mag., at $11.5^{\prime \prime}$ distance. Angle of position, 150°. No change in the position of the companion has been observed. |
| $0^{\mathrm{h}} 17^{\mathrm{m}}$ | $+55^{\circ} 8^{\prime}$ | T Cassiopeiæ. A red-coloured star, found to be variable by Krüger in 1870. It varies from about 6.5 mag . at maximum, to 11 at minimum. The period of variation is about 436 days. |
| $0^{\text {h }} 18^{\mathrm{m}}$ | $+37^{\circ} 55^{\prime}$ | R Andromedæ. A variable star with a long period, noted as such by Argelander in 1858. According to Schoenfeld it is of a rich orange colour. Its magnitude at maximum is 5.5 , and at minimum it is invisible, even with a most powerful telescope. Its period is about 405 days. |
| $0^{\text {h }} \quad 18{ }^{\text {m }}$ | $-10^{\circ} \quad 0^{\prime}$ | S Ceti. This star was found to be variable by Borelly in 1872. It varies from 7 mag. to 11 mag . Its supposed period of 324 days is very uncertain. |
| $0^{\text {hin }} 19^{\text {m }}$ | $+63^{\circ} 24^{\prime}$ | Place of the New Star in Cassiopeia, which Tycho observed from 11 Nov., 1572 , till March, 1574 , as a star of 1 mag. D'Arrest has made a list of all the stars in the neighbourhood of Nova, with the aid of the large refractor at Copenhagen, and states that any star not yet set down in his Chart, which may appear within a radius of 10^{\prime} from the place of Nova, may be considered as either new or variable. D'Arrest's Chart will be found at Sheet xvi. of this Atlas. The most brilliant star in this Chart is 8.9 mag ., the faintest 16 mag . |
| $0^{\text {h }} 233^{\mathrm{m}}$ | $+59^{\circ} 10^{\prime}$ | 63, Star Cluster in Cassiopeia. The stars composing this cluster, which was discovered by W. Herschel 16 Dec., 1788, are coarsely scattered. The cluster is nearly round in shape, and is from 15^{\prime} to 20^{\prime} in diameter Near the centre may be seen a star of 8.5 mag., and one or two others of 9 mag.; the rest are fainter, some of them being scarcely visible. |
| $0^{\text {h }} 25^{\mathrm{m}}$ | $+60^{\circ}{ }^{\circ} 1^{\prime}$ | 68, Star Cluster in Cassiopeia, is about 1^{\prime} in diameter, and rich in very minute stars. Discovered by Herschel 26 Nov., 1788, and described by him as but little removed from a resolvable nebula. The stars are densely massed together towards the centre of this cluster, which is globular in shape. |
| $0^{\text {h }} 26^{\text {m }}$ | $+6^{\circ} 18^{\prime}$ | 51, Piscium, 5 mag., has a companion of 9 mag. at $27^{\prime \prime}$ distance. No change has been observed in the position of this latter since the first accurate measurement. |

$\begin{gathered} \text { Alight } \\ \text { Asention } \\ \text { isco. } \end{gathered}$	Deelination 1 is80.	
$0^{\text {b }} 34^{\text {m }}$	$+20^{\circ} 4 r^{\prime}$	55, Piscium, a double star. The primary is 5 mag., and ycllow in colour. The companion at 6.3^{\prime} distance is 8 mag. and of a deep blue colour. Two very beautiful stars.
$0^{\text {m }} 34^{\text {m }}$	$+55^{\circ} 53^{\prime}$	α Cassiopeiæ, a reddish-coloured star, 2.2 mag., found to be slightly variable by Birt and Jobn Jerschel in 1831. It has a companion 9 mag. at $60^{\prime \prime}$ distance. (See note p. 8.)
$0^{\mathrm{h}} 3 \mathrm{~b}^{\mathrm{m}}$	$+40^{\circ} 35^{\prime}$	116, The Great Nebula in Andromeda. In fine weather, if there be no moorlight, this nebula can be clearly scen with an opera-glass. It is mentioned as early as the 10 th contury by the Persian astronomer Sufi. In the West it seems to have been first noticed by Simon Marius, 15 Dec., 1612. On examining it with the naked eye it appeared to him to be merely a small cloud, and on applying the telescope he could discover no evidence that it was of a stellar nature; it seemed nothing more than a patch of whitish light of greater brilliaucy at the centre and fainter at the edges. Narius compared it to a light scen from a great distance through some semi-transparent medium. Halley described the nebula as triangular, but Messier contends that it is furmed in the shape of two luminous pyramids applied on opposite sides of a common base, the diagonal passing from apex to apex pointing from N.W. to S.E. The distance between the apices is two-thirds of a degree, and the length of the common base one quarter of a degrec. Messier saw no star in the nebula, but noticed an increase of brilliancy towards the centre. Later on F. W. Herschel examined the nebula through his great telescope. The luminous central portion he, too, found to be of a nebulous character, but with indications of its being resolvable into separate stars. The middle, or the so-called nucleus of the nebula, has not a starry appearance, but viewed through a very powerful telescope it has a certain flaky look which confirms Herschel's opinion of its stellar character. Finally, an examination made in 1848, with the aid of the great Refractor at Cambridge, (U.S.A.), proved the existenco of upwards of 1,500 minute stars within the nebula, while the nebulous character of the whole was still apparent. Two thin, dark parallel streaks, sonewhat like two cracks, were found to run through the mass of stars, and have since been noticed by other observers. In the spectroseope this nebula gives clearly a continuous spectrum, thus proving that it is not a mass of incandescent gas, but rather a highly condensed star-cluster, at least in the central parts.
		With a powerful glass several faint stars may be seen scattered up and down over the nebula, one of them being of 10.5 mag . About the end of August, 1885, a star of 6.5 mag. suddenly appeared near the centre of the nebula which gave a continuous spectrum containing, probably, a few bright lines. By the middle of the following September it had dwindled down to 8.5 mag., and in the summer of 1886 had disappeared entirely, even the great Refractor at Washington failing to discover it. This new star was not, probably, a condensation of the central portion of the nebula, but seems on the contrary to have liad no relation to it. Probably it has always been in the place where it appeared, and is one of the countless faint stars observed there by 13ond. The sudden increase in brilliancy which

took place towards the end of August, 1885, was probably not owing to a great eruption of incandescent gas, but rather to other circumstances. Of the various possible theories, that which attribites the phenomenon to the conversion of cosmic motion into heat and light seems the most probable.
117, Companion of the great Nebula in Andromeda. Viewed through a telescope of low power this has the appearance of a nebulous star. In reality it is a star-cluster, but a very powerful instrument is required to distinguish the separate stars.
120, Star Cluster in Cassiopeia, discovered by Caroline Herschel. The stars are scattered somewhat coarsely over a space of from 15^{\prime} to 20^{\prime} in diameter, and range from 9 to 10 mag .
138, Nebula in Cetus was discovered by Caroline Herschel, Sept. 23,1783 ; it is long, narrow and bright, and is preceded by a star of 9 magnitude.
n Cassiopeiae, a yellowish star, 4 mag., with a purple coloured companion of 7.5 mag., discovered by Herschel, 17 Aug., 1779. The distance of the companion in 1882 was $5.2^{\prime \prime}$; the angle of position 165.7°; the time of revolution round its primary as calculated by Dunér is 176 years: the parallax, according to Clausen, is $0.371^{\prime \prime}$, indicating a distance from the earth of eleven billion miles.
65, Piscium, a double star, discovered by Herschel in 1783. Both stars are of 6 mag., and their relative position does not seem to vary. Distance $4.3^{\prime \prime}$.
66, Piscium. Recognised as a double star at Pulkowa, the primary being 6 mag., the companion 7 mag. Mädler, in 1843, found the distance to be $0.6^{\prime \prime}$. Dembowski, in 1885, could only perceive a single star of elongated form. Burnham, in 1880, calculated the companion's distance to be $0.4^{\prime \prime}$. The velocity of revolution of the companion is very high.
γ Cassiopeiae. This star, 3 mag., has a companion of 9.5 mag., at distance $432^{\prime \prime}$, angle of position 327°. There are nearly a dozen very minute stars nearer to the primary, but they can only be seen with a telescope of the highest power. (See note p. 8.)
μ Andromedae, a double star of 4 mag. and 11 mag., first recognised as such by John Herschel. The distance of the companion is $49^{\prime \prime}$; its angle of position $110.5^{\prime \prime}$; only visible with a very powerful telescope.
U Cephei, a variable star of the Algol type, discovered by Ceraski in 1880 . The star is generally 7 mag., but diminishes to 9.5 mag. in periods of 2.5 days. With a powerful telescope, two faint companions, of 11.5 and 13 mag. respectively, may be seen.
26, Ceti, a double star. Primary 6 mag., companion 9 mag.; distance $16^{\prime \prime}$; angle of position 253°. The position of the companion does not seem to vary.
${ }^{1}$ Piscium, a double star, consisting of two white coloured stars of 5 mag.; distance 30 ". They can be easily "divided " with the help of a pocket telescope. No change has been observed in their relative positions during the last 130 years.

$\begin{gathered} \text { Right } \\ \text { Ascension } \\ 1880 . \end{gathered}$	Declination 1880.
$1{ }^{\text {h }} \quad 0^{\text {m }}$	$+4^{\circ} 16^{\prime}$
$1^{\text {h }} \quad 5^{\text {m }}$	$+30^{\circ} 47^{\prime}$
$1^{\text {h }}{ }^{\text {m }}$	$+23^{\circ} 5 \%^{\prime}$
$1^{\mathrm{h}} \quad 8^{\mathrm{m}}$	$+6^{\circ} 56^{\prime}$
$1^{\mathrm{h}} 11^{\mathrm{m}}$	+ $71^{\circ} 59^{\prime}$
$1^{\text {b }} 12^{\mathrm{m}}$	$+58^{\circ} \quad 9^{\prime}$
$\begin{array}{ll} 1^{\mathrm{h}} & 14^{\mathrm{m}} \\ 1^{\mathrm{h}} & 15^{\mathrm{m}} \end{array}$	-1 $+88^{\circ}$ 40^{\prime}
$\begin{array}{ll} 1^{\mathrm{h}} & 17^{\mathrm{m}} \\ l^{\mathrm{n}} & 15^{\mathrm{m}} \end{array}$	$\begin{aligned} & +67^{\circ} 30^{\prime} \\ & +67^{\circ} 42^{\prime} \end{aligned}$
$1^{\text {h }} 13^{\mathrm{m}}$	$+8^{\circ} 55^{\prime}$
$1^{\text {h }} 24^{\text {m }}$	$+2^{\circ} 16^{\prime}$
$1^{\text {h }} \quad 25^{\mathrm{m}}$	$+60^{\circ} \quad 2^{\prime}$
$1^{\text {h }} 25^{\text {m }}$	- $7^{\circ} 29^{\prime}$
$1^{\text {h }} 27^{\text {m }}$	$+30^{\circ} 4^{\prime}$

77, Piscium, a beautiful double star ; primary 6 mag., companion 6.8 mag. ; distance $32.8^{\prime \prime}$. No change has been observed in their position.
f Piscium, recognised as a double star at Pulkowa. Primary 5 mag., companion 10 mag. ; distance $2.5^{\prime \prime}$.
φ Piscium, 6 mag., with a remarkably faint companion at $7.6^{\prime \prime}$ distance; angle of position 22°. Piazzi calls it a double star, but it is quite evident that his telescope would not have enabled him to see it had it been as faint then as it is at the present day.
ζ Piscium, a beautiful double star, easy to observe, the primary and companion being 5 mag. and 6 mag. respectively. The distance and angle of position have not undergone any essential alteration since Struve measured them in 1821, the former being $24^{\prime \prime}$, the latter 64°.
S Cassiopeiæ, a variable star of long period, discovered by Argelander in 1861. At maximum it is 6.7 mag., though it is often less than 8 mag.; at minimum it is under 13 mag., or it becomes quite invisible. The period is 615 days.

256, Star Cluster in Cassiopeiæ, a large cluster, rich in stars and nearly round in shape. The stars range from 7 to 10 mag . Discovered by Herschel, 18 Sept., 1787 . There is a double star in the cluster of 8 and 9 mag.

42, Ceti, a double star, 6 and 7 mag. Distance only $1.3^{\prime \prime}$.
α Ursæ Minoris, the Pole Star. 2 mag.; gives a yellowish light. It has a companion of 9 mag., distance $18.5^{\prime \prime}$, which was diseovered by Herschel, 17 Aug., 1779. According to Peters' calculation, its parallax is $0.08^{\prime \prime}$, indicating a distance from the earth of 40 billions of miles, but this result is very untrustworthy. (Sec note p.8.) Ind beveprnive by cecup bece
ψ Cassiopeiæ, a triple star. Herschel saw only the primary 4.4 mag. and a companion 8.5 mag., at distance $30^{\prime \prime}$. Struve, in 1831 , was the first to divide this latter into two separate stars of 8.9 and 9.5 mag. respectively, distance $3^{\prime \prime}$.

307 , Nebula in Pisces, a bright and fairly large nebula, with an increase of brilliancy towards the centre; 4 stars near to it.
R Piscium, a variable star of yellowish colour with a long period, discovered by Hind in 1851. At maximum it is from $7 \frac{1}{2}$ to $8 \frac{1}{9}$ mag., at minimum it is as low as $12 \frac{1}{3}$ mag. ; it gains more quickly in brilliancy than it loses, and the period is 345 days.

341, Star Cluster in Cassiopeia. This is not a very large cluster, but it contains several stars of 6 to 9 mag., among others a red-coloured star of 8 mag., and a double star, primary 6 mag., companion 10 mag ., distance $13.6^{\prime \prime}$.

312, Nebula in Cetus, faint and rather small, much brighter towards the centre. Discovered by Herschel, 10 Sept., 1785.

352, Nebula in Triangulum. Discovered first by Messier; very large and faint, but easy to observe in consequence of its extent. With a seven-foot telescope Herschel saw it dimly, and best with a low power. With a ten-foot reflector, the most brilliant part was resolved into separate stars, and when a still stronger instrument was employed, almost the whole nebula was resolved into stars, which seemed to Herschel nothing more than

$\begin{gathered} \text { Right } \\ \text { Aecension } \\ 1880 . \end{gathered}$	Declination 1880.
$1^{\text {h }} 56^{\text {m }}$	$+32^{\circ} 42^{\prime}$
$1^{\mathrm{h}} 5^{5}{ }^{\text {m }}$	$+41^{\circ} 4 j^{\prime}$
$2^{\text {h }} \quad 33^{\text {m }}$	$+25^{\circ} 22^{\prime}$
$2^{\text {h }} \quad 5^{\text {m }}$	$+29^{\circ} 44^{\prime}$
$2^{\text {h }} \quad 9^{\text {m }}$	$+24^{\circ} 30^{\prime}$
$2^{\text {h }} \quad 11^{\text {m }}$	$+56^{\circ} 36^{\prime}$
$2^{1 / 1} 13^{m}$	- $3^{\circ} 31^{\prime}$
$2^{\text {h }} \quad 15^{\text {m }}$	$+41^{\circ} 47^{\prime}$

e Trianguli. This star 5.5 mag. has an exceedingly faint conpanion, distance $4^{\prime \prime}$, angle of position 116.8°. It requires a very powerful instrument to distinguish this companion.
y Andromedae, a gold-coloured star, 3 mag., with a blue companion, 6 mag. Distance $10^{\prime \prime}$. The colour of both stars is very intense, and they are easily recognised as a double star. In 1842, however, Struve discovered that the companion is itself a double star, consisting of two separate stars of 6.7 mag. and 8.5 mag . respectively, distance only $0.5^{\prime \prime}$. At present this distance is still less $\left(0.3^{\prime \prime}\right)$, and a refractor of great power is required to divide the companion.

14, Arietis, a triple star ; the primary 5.6 mag., has at distance $93^{\prime \prime}$, angle of position 36.4°, a companion 8.9 mag., and a second at distance $106^{\prime \prime}$, angle of position, 278.5°. Herschel had measured the distance of the nearer companion in 1783.

6, Trianguli, a double star, primary (which is yellow) 5 mag., companion (which is blue) 6 mag., distauce $3.8^{\prime \prime}$. Discovered by Irersehel in 1781.
Ω Arietis, a variable orange-coloured star, discovered at Bonn in 1857, and sinee then frequently observed. The period is 186.2 days. At maximum the star is 7.6 to 8.5 mag. ; at minimum 12 mag. and under. When approaching its maximum the increase in brilliancy is often for weeks together very s!ow.

512,521 , Two large Star Clusters in Perseus, being one of the most magnificent objects of its kind in the heavens. The larger of the two χ is 30^{\prime} in diameter, and consists of a large number of stars ranging in magnitude from 6.5 to 13 and 14. Vogel and Lamont have measured this cluster with the mierometer. 'The sonthern cluster h is smaller, being 15 ' in diameter and less rich. The stars appear condensed towards the eentre. Photegcaphs have been taken of both clusters by the brothers Menry, at Paris, and Dr. Lohse at Potsdam.

- Ceti (Mira), a variable star with long period, and the first whose variability was detected. D. Fabricius observed it early on the morning of 12 August, 1596, as somewhat brighter than α Arietis. In October it had disappeared. He saw it again in February and Mareh, 1609 ; then Inolwarda observed it in 1638, and recognised its periodical variability. According to Argelander's calculations the period is $331 \frac{1}{3}$ days, but it is very irregular, and the difference of period is sometimes as much as 25 days. Its magnitude at maximum also varies greatly, being sometimes as much as 2 and often not more than 5 . At minimum it is 9 mag., being the same magnitude as that of a companion at distance 2^{\prime}, angle of position 85°. The star is of a deep red colour, and gives an interesting spectrum.

527, Nebula in Andromeda, fairly brilliant, 15 long by 3^{\prime} broad, with a dark eleft in the middle. Discovered by Miss Merschel in August, 1783. According to John Merschel it is a vast, flat, nebular ring, which is seen obliquely by us.

$\begin{aligned} & \text { Right } \\ & \text { Ascension } \\ & 1880 . \end{aligned}$	Declination 1880	
$2^{\mathrm{h}} \quad 19^{\text {m }}$	$+66^{\circ} 52^{\prime}$	Cassiopeiae (Σ 262). A triple star, discovered by W. Herschel. The primary 4.2 mag. has one companion 7.1 mag., distance $1.5^{\prime \prime}$, and a second companion 8.1 mag., distance $8.9^{\prime \prime}$. The nearer companion is not easily distinguished.
$2^{\text {h }} \quad 20^{\text {m }}$	- $0^{\circ} 43^{\prime}$	R Ceti, a variable star, first recognised as such by Argelander, 1866. At maximum it reaches sometimes 7 mag., at minimum, 13 mag . Period, 167 days.
$2^{\text {h }} 21^{\text {m }}$	- $1^{\circ} 41^{\prime}$	544, Planetary Nebula in Cetus, rather faint, with a diameter of from 3^{\prime} to 4^{\prime}; there are several stars round it. Discovered by W. Herschel, 6 Jan., 1785.
$2^{\text {h }} 30^{\text {m }}$	$+5^{\circ} 3^{\prime}$, Ceti ($\Sigma 281$). A double star, 4.5 mag., with a faint companion of 9.5 mag. Distance, $7.7^{\prime \prime}$; angle of position, 83°.
$2^{\text {h }} 30^{\text {m }}$	$+24^{\circ} 8^{\prime}$	30, Arietis. A beautiful double star, not difficult to observe. Its primary is 6 mag. ; companion, 6.5 mag. ; distance, $38.6^{\prime \prime}$. Both stars are white in colour. No change in position has been noticed since the time of Bradley. 273.3
$2^{\text {h }} 33^{\text {m }}$	$+38^{\circ} 33^{\prime}$	575, Nebula in Andromeda. Faint, 10^{\prime} in length, spindle-shaped, and surrounded by several faint stars.
$2^{\text {h }} 34^{\text {m }}$	$+26^{\circ} 33^{\prime}$	33, Arietis ($\Sigma 289$). A double star, first seen by Herschel 27 Sept., 1779. Primary, 5.8 mag. ; companion, 8.7 mag. ; distance, $28.5^{\prime \prime}$; angle of position, 359.4°. No change in position has been observed.
$2^{\mathrm{h}} 35^{\mathrm{m}}$	$+42^{\circ} 17^{\prime}$	584, Star Cluster in Perseus, having a diameter of 15^{\prime}; discovered by Messier. The stars range from 9 to 11 mag., and are coarsely distributed; with a small telescope upwards of 100 stars can be distinguished.
$2^{\text {h }} 37^{\text {m }}$	- $0^{\circ} 311^{\prime}$	600, Nebula in Cetus, first discovered by Méchain in 1780. It is small, fairly brilliant, and is preceded by one star, and followed by two others. According to Lord Rosse the nebula shows spiral arrangement.
$2^{\text {h }} 37^{\text {m }}$	$+2^{\circ} 44^{\prime}$	γ Ceti ($\Sigma 299$). A star of yellow colour, 3.5 mag., with a companion 6.5 mag.; distance, $2.4^{\prime \prime}$; angle of position, 286°.
$2^{\text {h }} 40^{\text {m }}$	- $8^{\circ} 4^{\prime}$	604, Nebula in Cetus. Faint, oval in shape, with a slight increase in brilliancy towards the centre; apparently a star cluster situated at an immeasurable distance.
$2^{\text {h }} 42^{\mathrm{m}}$	$+55^{\circ} 24^{\prime}$	${ }^{n}$ Persei ($\Sigma ~ 307$). . 4 mag., with a companion (of blueish colour), 8 mag. ; distance, $28^{\prime \prime}$. There are also several very faint stars near it.
$2^{\text {h }} \quad 42^{\text {m }}$	$+17^{\circ} \quad 2^{\prime}$	T Arietis. A variable star, discovered by Auwers 1870. At maximum, 8 mag. ; at minimum, 9.5 to 10 mag . Period, 324 days. Of a reddish colonr.
$2^{\text {h }} 43^{\text {m }}$	$+16^{\circ} 58^{\prime}$	π Arietis ($\Sigma 311$). Triple ; magnitudes, $5.5,8$, and 10 ; recognised as triple by Herschel in 1779. The nearest companion is at distance $3.3^{\prime \prime}$: angle of position, 121°. The faint outer companion at distance $25^{\prime \prime}$; angle of position, 110°.
$2^{\text {h }} \quad 43^{\text {m }}$	$+26^{\circ} 45^{\prime}$	41, Arietis. The primary is 4 mag. Herschel saw a faint companion in 1779 at distance $126^{\prime \prime}$ (angle of position, as calculated by Burnham in $1879,230^{\circ}$), then in 1782 a second at distance $34^{\prime \prime}$, angle of position 203. Finally, Struve, at Pulkowa, discovered yet another very faint companion (11 mag.) at distance $16^{\prime \prime}$. The distance of this latter, as calculated by Burnham in 1879 , was $21^{\prime \prime}$, angle of position 266°.

$\begin{gathered} \text { Right } \\ \text { Ascension } \\ 1880 . \end{gathered}$	Declination 1880	
$2^{\text {h }} 52^{\text {m }}$	$\begin{aligned} & +20^{\circ} 52^{\prime} \\ & +2100 \end{aligned}$	ε Arietis ($\Sigma 333$), a double star, primary 4.5 mag., companion 6 mag., distance $1.5^{\prime \prime}$. As conjectured by Struve, the primary probably varies from 4.5 mag. to 6.5 mag., aud the companion also seemed to him variable. Engelmann supports this theory.
$2^{\mathrm{h}} \quad 57^{\mathrm{m}}$	$+38^{\circ} 23^{\prime}$	ϱ Persei. This orange-coloured star was first recognised as variable in 1854, by J. Sehmidt. The period is seemingly quite irregular, and the brightness at maximum varies considerably.
$2^{\text {b }} 58^{\text {m }}$	$+24^{\circ} 47^{\prime}$	52, Arietis ($\Sigma 346$), triple, but cannot be clearly divided except by a very powerful telescope. The primary, 5.5 mag., has one companion at distance $0.7^{\prime \prime}$; the outer companion, which is very faint (11 mag.), is at distance $5^{\prime \prime}$.
$3^{\text {h }} \quad 0^{\text {m }}$	$+40^{\circ} 30^{\prime}$	β Persei (Algol), one of the most interesting variable stars. The variation was discovered as far back as 1767 or 1769 , by Montanari, but Goodricke, in 1782, was the first to recognise its true nature. Aceording to his account, the star remains invariable for $2 \frac{1}{2}$ days, and then deereases in $4 \frac{1}{2}$ hours to 3.7 mag ., and during the next $4 \frac{1}{2}$ hours it increases to 2.2 mag. The period is 2 days 20 h .48 m .53 .4 s . This is not constant, there being a difference of a few seconds in the course of the year.
$3^{\mathrm{h}} \quad 7^{\mathrm{m}}$	$1^{\circ} 39^{\prime}$	94, Ceti, 5.5 mag., has a very faint companion at distance $5.7^{\prime \prime}$, which it needs an extremely powerful telescope to distinguish.
3	$+46^{\circ} 47^{\prime}$	658, Star Cluster in Perseus. A beautiful cluster 8^{\prime} in diameter, very rieh in stars of 10 mag. and under. Diseovered by W. Hersebel, 27 Dec., 1786.
$3^{\text {h }} 7$	$-29^{\circ} 28^{\prime}$	12, Eridani, a star of 3.5 mag., with a companion 7.5 mag., distance $2.4^{\prime \prime}$, angle of position 316°.
$3^{\mathrm{h}} \quad 7 \mathrm{~m}$	$+65^{\circ} 13^{\prime}$	52, Camelopardalis. A star of 6.5 mag., with a companion 7 mag., at a distance of only $0.5^{\prime \prime}$. A very difficult object.
$3^{\text {h }} \quad 9{ }^{\text {m }}$	$+40^{\circ} \quad 2^{\prime}$	Σ 369, Double Star in Perseus. The primary, 8 mag., is of a yellowish-white colour; the companion, 8 mag., is blucish-white. The distance, $3.5^{\prime \prime}$, seems to be inereasing, but very gradually.
$3^{\text {h }} 16^{\text {m }}$	$-15^{\circ} 49^{\prime}$	692, Nebula in Eridanus, rather faint, large, irregularly round in shape, gradually increasing in brilliancy towards the centre. A star, 7 mag., precedes the nebula.
$3^{\mathrm{h}} 19^{\mathrm{m}}$	$+59^{\circ} 31$	$\Sigma 385$, Camelopardalis. The primary, 5 mag., is yellow in colour ; the companion, 9 mag., distance $2.4^{\prime \prime}$, angle of position 161°, is white.
$3^{\mathrm{h}} 21^{\mathrm{m}}$	$+55^{\circ} \quad 2^{\prime}$	£ 390, Camelopardalis. Primary 5 mag., greenish-white in colour, with a faint companion 9.5 mag., distance $15^{\prime \prime}$, angle of position 160°.
$3^{\text {b }} 21^{m}$	$-21^{\circ} 46^{\prime}$	709, Nebula in Eridanus, discovered by W. Mersehel ; fuirly bright, elongated, but small, with a nucleus, followed southwards by a small and very faint nebula.
$3^{\mathrm{h}} 22^{\mathrm{m}}$	$+35^{\circ} 15^{\prime}$	I Persei, a variable star. At maximun it sometimes reaches as much as 8 mag., and at minimum becomes frequently less than 13 mar. Period, 208.5 days. According to Schoenfeld it remains at $1: 3$ mag. and under for two months' time.

	Declination 1	
$3^{\text {h }} 233^{\text {m }}$	$+36^{\circ} 53^{\prime}$	717, Star Cluster in Perseus, large (15^{\prime} in diameter), contains about 60 stars coarsely scattered. Discovered by Herschel, 28 Dec., 1799.
$3^{\text {b }} 24^{\text {m }}$	$+58^{\circ} .21^{\prime}$	£ 396, Camelopardalis, a star 6.5 mag., with a faint companion, 8 mag., distance 20.3 ".
$3^{\text {h }} 27^{\text {m }}$	$+24^{\circ} 4^{\prime}$	7 , Tauri ($\sum 412$), 6 mag., with a companion 10 mag., distance $22^{\prime \prime}$. The star is thus described by W. Herschel, South and John Herschel. But Struve, with the Dorpat Refractor, divided the primary into two stars of almost equal brilliancy, at a distance of only $0.6^{\prime \prime}$ from one another.
$3^{\text {b }} 31^{\text {m }}$	$+0^{\circ} 12^{\prime}$	$\Sigma 422$, Eridani, a double star, primary 6.5 mag., companion 8 mag., distance $6.5^{\prime \prime}$. The primary is yellow, the companion blueish.
$3^{\text {b }} 34^{\text {m }}$	$+4^{\circ} 45^{\prime}$	$\Sigma 430$, Tauri. Triple 6.5, 9 and 9.5 mag. The first companion is at distance $26^{\prime \prime}$, angle of position 55°. The second at distance $38^{\prime \prime}$, angle of position 301°. The primary is yellowish.
$3^{\text {h }} 35^{\text {m }}$	$+33^{\circ} 35^{\prime}$	${ }^{\circ}$ Persei ($\Sigma 431$) a star 5 mag., with a faint companion 9.5 mag., distance $20^{\prime \prime}$.
$3^{\text {h }} 38{ }^{\text {m }}$	$+23^{\circ} 20^{\prime}$	768, Nebula in the Pleiades, discovered by Tempel, 19 Oct., 1859. An extremely faint nebula, situated near the star Merope. The brothers Henry have discovered, by the aid of photography, another very faint nebula which seems to proceed from the star Maia, but this can only be seen with a most powerful telescope. (Cf. Sheet xiii.) *
$3^{\text {h }} 40^{\text {m }}$	$+23^{\circ} 44^{\prime}$	n in the Pleiades, quadruple and a very beautiful object even as seen with a small telescope. The primary 3.5 mag. has one companion 6.5 mag. at distance $118^{\prime \prime}$, angle of position 289°, a second 7 mag., distance $116^{\prime \prime}$, angle of position 344°. Lastly there is a small star, 9 mag., at distance $115^{\prime \prime}$ from the companion of 6.5 mag., angle of position 303°; n is also known by the name Alcyone. (See Sheet xiii.)
$3^{\text {bi }} 40^{\text {m }}$	$+52^{\circ} 18^{\prime}$	775, Star Cluster in Perseus, small, consisting of about 30 stars, ranging in magnitude from 11 to 13 , besides one star of 10 mag. The whole is from 2^{\prime} to 3^{\prime} in diameter.
$3^{\text {h }} 42^{\text {m }}$	$+10^{\circ} 46^{\prime}$	30, Tauri ($\Sigma 452$) primary 5 mag., companion 9 mag., distance $9^{\prime \prime}$.
$3^{\text {h }} 42^{\text {m }}$	$+23^{\circ} 41^{\prime}$	乏 453, (Atlas) in the Pleiades, a star 4 mag. In 1827 and 1830 Struve fancied that he could distinguish a companion to this star of 8 mag., distance $0.8^{\prime \prime}$. It was, however, never seen afterwards by Struve or any other observer. Even Burnham always found the star to be single and perfectly round.
$3^{\text {h }} 47^{\text {m }}$	$+31^{\circ} 32^{\prime}$	ζ Persei ($\Sigma 464$). Quintuple. The primary 2.7 mag. has, at distance $13^{\prime \prime}$ a companion 9.5 mag., at distance $90^{\prime \prime}$ another of 10 mag , and a third 10 mag., at distance $122^{\prime \prime}$. There is besides a faint star of 12 mag., distance $33^{\prime \prime}$, angle of position 286°.
$3^{\text {h }} 48^{m}$	$-3^{\circ} 19^{\prime}$	32, Eridani ($\Sigma 470$), primary 5 mag., yellowish, with a companion 6 mag., distance $6.7^{\prime \prime}$, of a blueish colour. Discovered by W. Herschel in 1781. *The fuller traces of nebulosity which, in 1885, appeared round Maia and Mérope, are now shown on more sensitive plates (Dec., 1587) as well-defined nebule of complex structure.-ED.

$\begin{gathered} \text { Right } \\ \substack{\text { Reconsion } \\ \text { 1880. }} \end{gathered}$	Declination ${ }_{\text {1880. }}$	
$3^{\mathrm{h}} 50^{\text {m }}$	$+39^{\circ} 40^{\prime}$	ε Persei ($\Sigma 4 \pi$) , primary 3.5 mag., companion 8 mag., distance $9^{\prime \prime}$. The companion is probably variable, its colour too, is said to change from blue to red.
$3^{\text {h }} 50^{\text {m }}$	$+80^{\circ} 22^{\prime}$	$\Sigma 460$, Cephei, a very close double star, primary, 5.5 mag., companion 6 mag., distance only $0.7^{\prime \prime}$.
$3^{\mathrm{h}} 54^{\mathrm{m}}$	$+12^{\circ} 9^{\prime}$	λ Tauri, found to be variable by Baxendell in 1848. It belongs to the Algoltype. Period 4 days; the changes in brilliancy, however, only occupy 10^{h}; magnitude at maximum 3.4, at minimum 4.2. It loses more quickly than it gains in brilliancy.
$3^{\mathrm{h}} 57^{\text {m }}$	$+60^{\circ} 31^{\prime}$	801, Nebula in Camelopardalis. Rosse saw a star of 14 mag., surrounded by a nebular ring in the centre of this nebula. To observe this nebula in detail a most powerful telescope is required : even when examined with an 8 -inch refractor it is very faint.
$3^{\text {b }} 57^{\text {m }}$	$+62^{\circ} 2^{\prime}$	$\Sigma 485$, Camelopardalis. Two stars of about 6 mag. at $18^{\prime \prime}$ distance. A triple $\operatorname{star}(\Sigma 484)$ consisting of three stars of 9 mag., preeedes this double star.
$4^{\text {h }} \quad 1^{m}$	$+49^{\circ} 12^{\prime}$	809, Star Cluster in Perseus, very beautiful and rich in stars, 7^{\prime} in diameter, rather crowded and irregularly round in shape. This cluster is surrounded by a ring of faint stars, which cannot be well seen except with a very powerful instrument.
$4^{\text {h }} \quad 1^{\text {m }}$	$+14^{\circ} 50^{\prime}$	$\Sigma 495$, Tauri. Primary 6.5 mag., companion 9 mag., distance 4
$4^{\text {b }} \quad 2^{\text {m }}$	$+30^{\circ} 28^{\prime}$	810, Nebulous Star in Taurus, a star of 8 mag., surrounded by a faint nebula 3^{\prime} in diameter.
$4^{\text {b }} \quad 6^{m}$	$+48^{\circ}$	μ Persei. Discovered to be a double star by W. Herschel, 2 Aug., 1782. The primary is 4 mag. and white in colour, the companion 8.5 mag. is at distauce $92^{\prime \prime}$. At Pulkowa another very faint companion was diseovered, distance (according to Burnham) 14", angle of position 349°.
$4^{\text {h }} \quad 6^{\text {m }}$	$+10^{\circ} 54^{\prime}$	820, Star Cluster in Perseus, rich in stars, nearly 15^{\prime} in diameter, rather crowded with a number of fairly brilliant stars, apparently arranged in curves; 30^{\prime} to the south it is followed by a reddish-coloured star of 9 mag.
$4^{\mathrm{h}} \quad 8^{\mathrm{m}}$	$+8^{\circ} 58^{\prime}$	47, Tauri. Primary 5 mag., companion 8 mag., distance only $0.8^{\prime \prime}$. There is, in addition, a scoond very faint companion (12 mag .) at distance $32.2^{\prime \prime}$, angle of position 223°. This last was discovered by Burnham.
$4^{\text {b }} \quad 9^{\text {m }}$	$+15^{\circ} 6^{\prime}$	4, Tauri. Up to 1872 , J. Schmidt found that he could always make this star out with the naked eye as of 6 mag. In September, 1872, it decreased to 7 mag., and then again became visible to the naked cye, nor has any variation been observed in its brilliancy since 1874.
$4^{\text {h }} \quad 9{ }^{\text {m }}$	$-10^{\circ} 33^{\prime}$	A Eridani ($\Sigma 516$), primary 5 mag., and yellowish in colour, with a very faint companion 9 mag., distance 6.3". First discovered to be a double star by W. Herschel, 31 Jan., 1785.
$4^{\text {h }} \quad 9^{\text {m }}$	$-13^{\circ} 2^{\prime}$	826, Nebula in Eridanus, a planetary disk, of fair brilliancy. According to Lassell there is a star of 12 mag . in the centre. Herschel who discovered it in 1785, took it to be a star cluster, and its spectrum supports this view. The nebula is a very small one.

$\begin{gathered} \text { Right } \\ \substack{\text { Anoenssion } \\ \text { 18so. }} \end{gathered}$	Declination 1880	
$4^{\text {h }} 10^{\text {m }}$	$-7^{\circ} 50^{\prime}$	o^{2} Eridani (乏 518). A star of 4.5 mag., with a companion 9 mag., which is itself a double star. The companion is at distance $82^{\prime \prime}$, and the two stars which compose it are at distance $3.6^{\prime \prime}$ from one another. Discovered by W. Herschel in 1873, with the help of a 6 -inch reflector.
$4^{\mathrm{h}} 12^{\mathrm{m}}$	$+49^{\circ} 56^{\prime}$	831, Star Cluster in Perseus, the stars are coarsely scattered, fairly numerous, and many of them are of fair brilliancy. Discovered by W. Herschel, 28 Dec., 1790.
$4^{\text {b }} 13^{\text {m }}$	$+27^{\circ} 4^{\prime}$	φ Tauri, a double star, primary (which is reddish) 5.5 mag., companion 8.5 mag. Distance (in 1873) 54 $4^{\prime \prime}$, angle of position 246°.
$4^{\text {h }} 15^{\text {m }}$	$+25^{\circ} 21^{\prime}$	χ Tauri ($\Sigma 528$), a star 6 mag., with companion 8 mag., distance 19.3".
$4^{\text {h }} 15^{\text {m }}$	$+19^{\circ} 15^{\prime}$	T Tauri, a variable star of irregular period, discovered by Hind, 1861. It is preceded 1^{m} by a very remarkable variable nebula (G.C.839). This latter had been frequently seen since 1854, but in 1861 d'Arrest could not find any trace of it even with the great refractor at Copenhagen. According to Argelander, the star T was of 9.4 mag. in 1852; but since 1869 it has always been less than 11 mag.; its brilliancy has seemingly decreased at the same rate as that of the nebula, a noteworthy fact, since it seems to indicate some sort of relation between the two phenomena.
$4^{\text {h }} 17^{\text {m }}$ m ${ }^{\text {m }}-18^{\text {m }}$	$+33^{\circ} 59^{\prime}$	
	$+22^{\circ} 1^{\prime}$	x Tauri, two stars of 5 mag. and 6 mag. respectively, at distance $339^{\prime \prime}$ from one another ; between the two there is a minute double star of 11.2 and 11.6 mag., distance $5^{\prime \prime}$.
$4^{\text {h }} 21^{\text {m }}$	$+30^{\circ} \quad 6$	$\Sigma 548$, Tauri, a double star of 6 and 8 mag., distance $14^{\prime \prime}$.
$4^{\text {b }} 22^{\text {m }}$	$+9^{\circ} 54^{\prime}$	R Tauri. First recognised as a variable star by Hind in 1849. It is of a deep red. At maximum it fluctuates between 7.4 and 9 mag.; at minimum it is less than 13 mag . Period of variability nearly $325 \frac{1}{3}$ days.
$4^{\text {h }} 22^{\text {m }}$	$+15^{\circ} 42^{\prime}$	θ^{1} Tauri, two stars of 4 and 4.3 mag., distance $337^{\prime \prime}$. Can be recognised as a double star with the naked eye. In spite of their great apparent distance, the stars seem to stand in a physical relation to each other.
$4^{\text {b }} 23^{\text {m }}$	$+53^{\circ} 39^{\prime}$	1, Camelopardalis ($\Sigma 550$), a star of 6.1 mag., with a companion 6.2 mag., at distance $10.4^{\prime \prime}$.
$4^{\text {h }} 23^{\text {m }}$	$+39^{\circ} 44^{\prime}$	$\Sigma 552$, Persei, a double star, 6 mag. and 6.5 mag., distance $8.9^{\prime \prime}$. Both stars are white.
$4^{1 \times} 23^{\text {m }}$	$+15^{\circ} 23^{\prime}$	80, Tauri ($\Sigma 554$), 6.5 mag. A very close double star, the companion 7.5 mag., being, in 1879 , only at distance $0.6^{\prime \prime}$, and this is continually decreasing.
$4^{\text {h }} 25^{\text {m }}$	$+42^{\circ} 48^{\prime}$	m Persei. Two stars of from 6 mag to 7 mag., at distance $114_{\%}^{\prime \prime}$. In Herschel's time these stars seem to have been much fainter.
$4^{\mathrm{n}} 29^{\mathrm{m}}$	$+16^{\circ} 16^{\prime}$	\& Tauri (Aldebaran), a red star 1 mag., with a very interesting spectrum (Vogel, Class IIa). It has a companion 10 mag., at distance $113^{\prime \prime}$. Burnham discovered a second companion at distance $30.4^{\prime \prime}$, angle of position 109°; but it is so faint as to be visible only in a most powerful telescope.
$4^{\text {h }} 29^{\text {m }}$	$+9^{\circ} 55^{\prime}$	88, Tauri, 5 mag., with companion 8 mag., distance $70^{\prime \prime}$. Discovered by W. Herschel, 24 Sept., 1780.

$\begin{gathered} \text { Reight } \\ \text { Asionsion } \\ \text { ispos } \end{gathered}$	Decination 18.	
$4^{\text {h }} 30^{\text {m }}$	$+53^{\circ} 15^{\prime}$	2, Camelopardalis ($\Sigma 566$). 6 mag., yellowish, with a blucish companion, 7.4 mag. ; distance (according to Engelmann, 1883), $1.9^{\prime \prime}$; angle of position, 291.9°.
$4^{\text {b }} 32^{\text {m }}$	$+15^{\circ} 41^{\prime}$	σ Tauri. Two stars of 4.6 and 5.5 mag.; distance, $429^{\prime \prime}$; can be divided by the naked eye.
$4^{\mathrm{h}} 35^{\text {m }}$	$+22^{\circ} 44^{\prime}$	τ Tauri. 4.5 mag., with an easily distinguished companion, 7 mag., at distance 63". Discovered by Chr. Mayer.
$4^{\text {b }} \quad 38^{\mathrm{m}}$	$-9^{\circ} 1^{\prime}$	55, Eridani ($\Sigma 590$). A star of 6.2 mag., with a companion, 7 mag.; distance, $9^{\prime \prime}$. The primary is yellowish, the companion white in colour. Found to be double by W. Hersehel in 1783.
$4^{\text {h }} 41^{\text {m }}$	$+10^{\circ} 43^{\prime}$	905, Star Cluster in Orion, consisting of 18 stars of from 8 to 11 mag. Somewhat scattered. Vogel has measured their relative positions with the micrometer.
$4^{\text {h }} 45^{m}$	$+17^{\circ} 20^{\prime}$	V Tauri. A variable star, first recognised as such by Auwers, 1870. The star is reddish. At maximum it reaches 8.3 mag.; at minimum it diminishes to 13 mag. Period, 168.6 days.
$4^{\text {h }} 48^{\text {m }}$	$+53^{\circ} 33^{\prime}$	7, Camelopardalis ($\Sigma 610$). A star of 5 mag., with a very faint companion (11.3 mag.), at distance 25". Dembowski, in 1864, discovered that the primary was itself a double star, having a companion of 8 mag. at distance $1.2^{\prime \prime}$.
$4^{\text {b }} 5$	- $5^{\circ} 22^{\prime}$	b Eridani, 6 mag., with companion 8 mag., distanee 64
$4^{\text {h }} 51^{\text {m }}$	$+37^{\circ} 43^{\prime}$	4, Aurigae ($\Sigma 616$). A star 5.5 mag., giving a greenish light, with a companion 7 mag., distance $6^{\prime \prime}$. First recognised as a double star by W. Hersehel, 30 Oct. 1779.
$4^{\text {h }} 52^{\text {m }}$	$+7^{\circ} 57^{\prime}$	R Orionis. A variable star, of a deep red colour, discovered by Hind in 1848. At maximum it reaches almost 9 mag., at minimum it is less than 13. Period, 379 days. According to Schoenfeld the increase in brilliancy from 10 mag. upwards occupies 70 days; the decrease from maximum to 10 mag., 105 days.
$4^{\text {h }} 52^{\text {m }}$	$+53^{\circ} 41^{\prime}$	940, Star Cluster in Camelopardalis, fairly large and conspicuous. The stars are of various magnitudes, and are closer together towards the centre.
$4^{\text {h }} 53^{\text {m }}$	$+43^{\circ} 39^{\prime}$	£ Aurigae. Recognised as variable by Schmidt and Meis. The star is 3 mag., but has been seen at times as a star of 4.5 mag. The variations of brilliancy are, however, very irregular, and are often for a long time imperceptible.
$4^{\text {h }} \cdot 54^{\text {m }}$	$-14^{\circ} 59^{\prime}$	R Leporis. A variable star of a bright red colour, called a "crimson star" by ITind. Schmidt, in 1855, was the first to recognise it as variable. The period is about 438 days, but seems to be very irregular. At maximum the star is 6 to 7 , at minimum 8.5 mag. It has a remarkable spectrum.
$4^{\text {h }} 54^{m}$	$+3^{\circ} 26^{\prime}$	$\Sigma 627$, Orionis, 6.5 mag., with a companion of nearly 7 mag., at distance $21^{\prime \prime}$. This latter has not undergone any pereeptible change since 1831 .
$4^{\text {h }} 59^{m}$	$+1^{\circ} 1^{\prime}$	96 B., Orionis. A remarkable red-coloured star, estimated by Lalande and Bessel as of 7 mag., but by Birmingham, in 1871, as of 6 mag . The red tint is also probably slightly variable.
$5^{\text {h }}$	$+37^{\circ} 12^{\prime}$	996, Star Cluster in Auriga. This is really not a cluster, but rather a rich field of stars. Herschel first saw it 17 Jan., 1787. The most brilliant stars contained in it are of 7.5 mag ., the faintest 11.5 mag .

1005, Nebula in Orion, fairly brilliant, 3^{\prime} in diameter, and gradually fading towards the edges. It forms a triangle with two stars, 10 mag. and 12 mag. respectively. Discovered by Herschel, 2 Jan., 1786.

- Orionis. A star of 6 mag., with a companion 7 mag., at distance $1.1^{\prime \prime}$, angle of position 205°.
Σ 645, Aurigae. A double star, primary 6.5 mag., companion 8 mag., distance $12^{\prime \prime}$, angle of position 26.8°.
Σ 634, Camelopardalis. A star of 4.5 mag., with a companion 8 mag. In 1834 the distance was $34.5^{\prime \prime}$, but in 1880 it was only $20^{\prime \prime}$; angle of position 60°.

1030, Star Cluster in Taurus, 20^{\prime} to 25^{\prime} in diameter, rich and fairly crowded with stars ranging from 11 mag . to 14 mag . Discovered by Herschel, 19 Feb., 1784.
$\Sigma 652$, Orionis. A double star, primary 6.5 mag., companion 8 mag., distance only $1.7^{\prime \prime}$, angle of position (Struve, 1830) 184°.
${ }_{\varrho}$ Orionis ($\Sigma 654$). A yellow star, 4.7 mag., with a companion 8.5 mag., of a blueish white ; distance $7^{\prime \prime}$. No change has been observed in the position of the companion since Herschel's time.

، Leporis ($\Sigma 655$). A greenish star, 5 mag., with a faint companion 10.5 mag ; distance $12.8^{\prime \prime}$. This distance does not seem to vary. The angle of position, 337°, also seems to be nearly invariable.
R Aurigae. A variable star, first recognised as such at Bonn Observatory in 1862. At maximum it reaches 6.5 to 7.5 mag., at minimum it is almost 13. Period 465 days. The changes in brilliancy are sometimes very peculiar.
a Aurigae (Capella). A white star, 1 mag., with companion 9 mag ; distance 159," angle of position 146.2° (discovered by Herschel). Burnham found two other very faint companions, magnitude 12 and 13 mag., distance $78^{\prime \prime}$ and $126^{\prime \prime}$, angle of position 317° and 183° respectively. Struve (in 1838) conjectured that Capella had become more brilliant than formerly, and that it was at one time fainter than Vega. J. Herschel supported this theory.

14, Aurigae ($\Sigma 652$), triple. The primary, 5.5 mag., has a companion 7 mag., at distance $14.5^{\prime \prime}$. This was first seen by W. Herschel, 24 Sept., 1780. Struve, in 1830, discovered another very faint companion (11 mag.) at distance $12.6^{\prime \prime}$, angle of position 342°.
\times Leporis ($\Sigma 661$). A double star, primary 5 , companion 8 mag., distance 2.5". According to Struve, the primary is yellowish, the companion blueish.
β Orionis (Rigel) ($\Sigma 668$). A brilliant star, 1 mag., with a companion 8 mag., distance $9.6^{\prime \prime}$. Discovered by W. Herschel, and a very beautiful object in a powerful telescope. The companion, as remarked by Burnham in 1871, is itself a double star, but it is such a difficult object that Burnham himself, with the 18 -inch refractor at Chicago, only at times succeeded in "dividing" it. Other observers have so far been unable to do so. There is yet another very faint star at distance $44^{\prime \prime}$, angle of position 1.5°. According to Seidel, β is in a slight degree variable.

$\begin{gathered} \text { Right } \\ \text { Rencon } \\ \text { Rensoion } \end{gathered}$	Deolination ${ }_{\text {liss.in }}$
$5^{\text {b }} 22^{\text {m }}$	$+25^{\circ} \quad 3^{\prime}$
$3^{\text {b }} 23^{\text {m }}$	$-20^{\circ} 51^{\prime}$
$5^{\text {b }} 23^{\text {m }}$	$-1^{\circ} 11^{\prime}$
$5^{\text {h }} 24^{\text {m }}$	$+5^{\circ} 51^{\prime}$
$5^{\text {h }} \quad 24^{\text {m }}$	$+34^{\circ} \quad 9^{\prime}$
$5^{\text {b }} 25^{\text {m }}$	$+3^{\circ} 12^{\prime}$
$5^{\mathrm{h}} 25^{\mathrm{m}}$	$+16^{\circ} 59^{\prime}$
$5^{\mathrm{h}} 26^{\mathrm{m}}$	- $0^{\circ} 23^{\prime}$
$5^{\text {h }} 27^{\text {m }}$	$+21^{\circ} 56^{\prime}$
$5^{\text {h }} 27^{\text {m }}$	$-17^{\circ} 55^{\prime}$
$5^{\text {h }} 28^{\text {m }}$	$+34^{\circ} 4^{\prime}$

118, Tauri ($\Sigma 716$), a double star, primary 6 mag., companion 7 mag. Discovered by Herschel in 1782, but since his time the position of the companion has undergone little or no change. Distance $5^{\prime \prime}$, angle of position, 200°.
β Leporis. This star 3 mag., has, as discovered by Burnham, several very faint companions ($10-11$ mag.), whose position he thus calculated in 1879.

A B Distance	$2.7^{\prime \prime \prime}$.	Angle of position, 288°.		
A C	$206.3^{\prime \prime}$.	$"$	75°	
A D	$"$	$241.5^{\prime \prime}$.	$"$	58°.

In 1834, J. Herschel saw a faint star at about $70^{\prime \prime}$ distance, angle of position 146°.

31, Orionis ($\Sigma 725$), a double star, primary 5.8 mag., companion 11 mag., distance $12.7^{\prime \prime}$, angle of position 88.4°. The primary is reddish in colour and apparently variable ; at least Gould at Cordova estimated its magnitude at various times as 4.7 mag . to 6 mag .

A 32, Orionis ($\Sigma 728$), 5.2 mag. with a companion 6.7 mag., distance (in 1878) only $0.5^{\prime \prime}$. In W. Herschel's time the distance was more than $1^{\prime \prime}$.

1137, Nebula in Auriga, a large, brilliant, circular nebula, with a slightly increased brilliancy at the centre, where there is a triple star. The whole is 5^{\prime} in diameter. Discovered by Herschel 4 Feb., 1793. According to Brodie, the nebula is very faint.
$\mathrm{n}^{\prime} 33$, Orionis ($\Sigma 729$), 6 mag. with a companion of 7 mag. at distance $1.9^{\prime \prime}$. Not easy to observe with an ordinary telescope.
$\Sigma 730$, Tauri, a double star, 6.5 and 7 mag. Distance $9.8^{\prime \prime}$. Angle of position, 142°.
¿Orionis, a double star, 2.5 and 6.8 mag. Distance 52.7". Burnham lately noticed yet another companion of between 13 and 14 mag., and remarks that this is one of the faintest that he has ever seen near a brilliant star. The primary is variable, but only to extent of half a magnitude, and the period is irregular.

1157, Nebula in Taurus. Seen as far back as 1731, by Messier, but imperfectly, and described by him as a starless nebula, something like a dull flame. W. Herschel thought it capable of being resolved, and alluded to it as a magnificent object. Lord Rosse, with his great telescope, was the first to obtain an exact view of the nebula; he compared its appearance to that of a crab (crab-nebula); he saw several very minute stars in it, and gave a drawing of the whole. Dreyer, however, asserts that all the former representations of this nebula fail to give a satisfactory description of its appearance as seen through a telescope of the highest power.
α Leporis, yellowish, 3.5 mag. with a companion 10 mag. at distance $35^{\prime \prime}$., angle of position 156°.

1166, Star Cluster in Auriga. Near the star φ. A cluster 9^{\prime} in diameter, a very fine view of which may be obtained with a $3 \frac{1}{5}$-inch refractor. The stars are from 7 to 11 mag., the double star $\Sigma 737$, (8 and 9 mag., distance $10.6^{\prime \prime}$.) being among them.

Abstract

 observed even in the most powerful telescopes. Lamont also discovered two stars which could be considered as belonging to the Trapezium, and Lassell, at Malta, 2 Jan., 1862, another very faint star, so that altogether the total number of stars belonging to the Trapezium, which have been observed within a space of 4 minutes square, amounts to 11 or 12 . These, however, have never been visible at the same time to one observer. Moreover, Burnham, who is unquestionably one of the ablest, if not the most able, observer in this particular field, absolutely declines to admit that more than six stars are visible in the Trapezium, and considers the observations which oppose this theory to be untrustworthy. He likewise refuses to credit the supposed variability of the fifth or sixth star. This last he thinks to be of 12 mag.

1184, Star Cluster in Orion. An extended group of stars, of 6 and 7 mag., besides some fainter ones. Among them is a double star ($\Sigma 750$), 6 and 9 mag., distance $4.3^{\prime \prime}$.

- Orionis ($\Sigma 752$). A triple star, primary, 3.5 mag.; companions, 7 and 9.5 mag. W. Herschel saw only the companion of 7 mag. at distance $11.3^{\prime \prime}$. The farther and fainter companion (distance $50^{\prime \prime}$), was observed by South in 1824.

1185, Nebula in Orion, fairly brilliant and large, brighter towards the centre, where there is a star of 8 mag. Messier had observed this object, and described it as a star with a nebulous envelope.

1191, Yariable Nebula in Taurus. A star of 11 mag. was observed in this place by Chacornac in 1852, but without any trace of nebula. Next year he saw the star again, this time surrounded by nebula; on 27 Jan., 1856, the nebula had become very brilliant, but in 1862 it had entirely disappeared, and has not since been observed. The star (11 mag.) has not been observed to vary.

1193, Nebula round \& Orionis. On Jan. 2, 1786, W. Herschel writes in his diary that he is nearly certain that = Orionis is surrounded by an irregularly blurred, milky mass of nebula. This observation was, as it turned out, a just one; several other observers have noticed the faint nebula round the star. Rosse's great telescope showed it in 1850 and 1852; but in 1874 and 1878, in spite of many efforts, it was impossible to distinguish it, even with this instrument. \in Orionis has besides a faint companion, of 9 mag., distance 3^{\prime}, angle of position, 57°.

1199, Star Cluster in Taurus. A large cluster, 15^{\prime} in diameter. The stars are all of nearly equal magnitude, and evenly distributed, but not very numerous. Discovered by Herschel, 7 Dec., 1785.

26, Aurigae. A double star, 6 and 8 mag., distance $12^{\prime \prime}$. Discovered by W. Herschel in 1782. Burnham found also a small star, 11 mag., distance, $26^{\prime \prime}$, angle of position, 113°.

σ Orionis. A multiple star, really a group consisting of two quadruple and two very faint stars. The primary ($\Sigma 762$) is 4 mag., and has one companion B (7.5 mag .), distance $12^{\prime \prime}$, angle of position 48°; another C (6.5 mag.), distance $61^{\prime \prime}$, angle of position, 42°; and finally a third very faint companion (11 mag.), α, distance $12^{\prime \prime}$, angle of position, 236°. The second quadruple star is at distance $3 \frac{1}{3}^{\prime}$, angle of position, 322°. The three most brilliant stars of this are 8.5 mag. Between these two groups a very powerful instrument shows two very faint stars.

45, Leporis, a Multiple Star. Described by J. Herschel as quintuple, but it has other companions as well, though they are very faint, and were first discovered by Burnham. The latter gives the following magnitudes: A 6.8, B 9.3, C 8, D 8.5, E 8.5, F 13, G 10, a 8.3, b 9.7. When Burnham directed his attention to this system of stars be saw at a glance that A and B were each of them double stars. The following measurements, calculated by Burnham and Dembowski, give the relative positions of the various stars belonging to the system. $d=$ distance, $p=$ angle of position.

	d			d	p
A B	$89.4^{\prime \prime}$	136.0°	A E	$60.3^{\prime \prime}$	48.7°
A C	$76.2^{\prime \prime}$	6.2°	A F	$41.8^{\prime \prime}$	310.4°
A D 126.4	298.0°	A a	$0.9^{\prime \prime}$	137.8°	
			B b	$1.5^{\prime \prime}$	359.7°
			B a	$51.3^{\prime \prime}$	31.8°

J. Herschel saw only the stars A, B, C, D, E.

1225, Nebula in Orion. Not very brilliant, small, planetary; seen with a low power it resembles a star of large diameter. Hersehel saw it 28 Dec. 1785 , with a magnifying power of 240 , as an ill-defined, planetary nebula. It is preceded by several small stars. Lord Rosse conjectures that it is a star cluster at an immeasurable distance.
ζ Orionis ($\Sigma 744$). A beautiful double star, 2 and 5.7 mag., distance $2.6^{\prime \prime}$, discovered by Kunowsky in 1819. Changes in the position of the companion cannot be affirmed with certainty. A star of 9 mag. stands at distance $57^{\prime \prime}$, angle of position 9.1°.

1226, Nebula in Orion. A star of fair brillianey, in the middle of a nebula 5^{\prime} long by 4^{\prime} broad. Discovered by W. Herschel, 6 Jan., 1785.

1227, Nebula in Orion, irregular, of fair brilliancy and size, with a dark space in centre. Discovered by W. Herschel, 1 Jan., 1786, who described it as a remarkable, milky, nebulous mass, divided into 3 or 4 large strips, which surround a dark space. He estimated its size as not less tban $\frac{1}{2}^{\circ}$, and thought it was probably much larger. This nebula follows a little to the north of ζ Orionis, and when viewed with a low magnifying power, comes into the field of vision at the same moment. Sheet xviii. shows this nebula as it appeared to Tempel at Florence.

$\begin{gathered} \text { Right } \\ \hline \text { Asochnion } \\ \text { 1850. } \end{gathered}$	Declination ${ }_{\text {cosen }}$
$5^{\text {h }} 39^{\text {m }}$	$+65^{\circ} 43^{\prime}$
$5^{\mathrm{h}} \quad 40^{\mathrm{m}}$	$-22^{\circ} 29^{\prime}$
$5^{\text {h }} 41^{\text {m }}$	$-0^{\circ} 2^{\prime}$
$5^{\text {h }} 42^{\text {m }}$	$+6^{\circ} 25^{\prime}$

Σ 780, Camelopardalis. A triple star, discovered by Struve. Primary (A) is 7 mag., the nearer companion (B) 8.5 mag., the farther (C) 12 mag. Struve, in 1831, gave the following measurements: A B, d= $3.7^{\prime \prime}, \mathrm{p}=103.5^{\circ} ; \mathrm{A} \mathrm{C}, \mathrm{d}=10.9^{\prime \prime}, \mathrm{p}=154.8^{\circ}$.
γ Leporis. Primary, 4 mag., somewhat yellowish, at distance $94^{\prime \prime}$, angle of position 349°, is a star of 8 mag.
1267, Nebula in Orion, seen by Méchain in 1780, and described as consisting of two brilliant stars surrounded by nebula. In it there is a double star, 8 and 8.5 mag., $51^{\prime \prime}$ distance. Burnham found that the companion is itself double ; distance $1.7^{\prime \prime}$.
52, Orionis ($\mathbf{\Sigma} 795$). A star of 5.5 mag., with a companion 7 mag., distance $1.5^{\prime \prime}$. Discovered by Hersohel, 1 Oct., 1781; the companion can be seen with a $3 \frac{1}{3}$-inch telescope.
1295, Star Cluster in Auriga, discovered by Messier, and a splendid object. Seen with a pocket-telescope, it looks like a nebulous star. Messier says that the stars are very crowded, and slightly mingled with nebula. They are of 10 mag. and under. Over 500 may be seen with a powerful telescope. Diameter of the whole 24 '.
$\Sigma 816$, Orionis. A double star, 6.5 and 8.5 mag. Distance $4.2^{\prime \prime}$, angle of position, according to Struve (1830), 289°.
1310, Star Cluster in Orion, τ^{\prime} to 8^{\prime} in diameter. The stars are, however, small and somewhat crowded.
${ }_{\alpha}$ Orionis (Betelgeux), a brilliant red star, 1 mag., which (as discovered by W. Herschel) has a companion of 10 mag . at distance $161^{\prime \prime}$. Burnham saw, besides this, several much fainter stars nearer to α. Betelgeux is variable, as discovered by J. Herschel in 1836, but the period of variability seems to be very irregular. The star has an interesting spectrum which has been carefully studied by Huggins.
θ Aurigae, a triple star. Primary 3 mag., nearer companion 7 mag. The farther, 9 mag. The distance of the former is $2^{\prime \prime}$ of the latter $45^{\prime \prime}$ According to 0 . Struve there is a fourth star 10 mag. at distance $125^{\prime \prime}$, angle of position 350°.
1325, Star Cluster in Gemini, a cluster of 6^{\prime} to 7^{\prime} in diameter, containing coarsely-scattered stars of 7 to 11 mag. W. Herschel discovered it 16 November, 1784.
1360, Star Cluster in Gemini, a very splendid object, seen by Messier, 20^{\prime} in diameter. The most brilliant stars in it are of 9 mag . The field of vision is, however, filled with stars ranging from this magnitude to the faintest points of light.
1361, Star Cluster in Orion, fairly considerable, consisting of about 30 stars of 9 to 10 mag., among others a double star ($\Sigma 848$) of 7 and 8 mag., distance 2.3". This is a little north of the centre of the cluster.
41, Aurigae ($\Sigma 845$), a double star, 6 and 6.5 mag., discovered by Herschel. The distance ($8.0^{\prime \prime}$) and angle of position (353°) do not seem to vary.
$\Sigma 855$, Orionis, 6 mag., with a companion 6.7 mag., distance $29.3^{\prime \prime}$.

$\begin{gathered} \text { Might } \\ \text { Ascension } \\ 1880 . \end{gathered}$	Declination 1880.
$6^{\text {b }} \quad 33^{\text {m }}$	$-11^{\circ} 8^{\prime}$
$6^{\text {h }} \quad 6^{\text {m }}$	$+5^{\circ} 29^{\prime}$
$6^{\mathrm{h}} \quad 7^{\mathrm{m}}$	$+12^{\circ} 50^{\prime}$
$6^{\text {h }} \quad 7^{\text {m }}$	$+36^{\circ} 12^{\prime}$
$6^{\text {h }} \quad 8^{\mathrm{m}}$	$+22^{\circ} 32^{\prime}$
$6^{\text {h }} \quad 9^{\mathrm{m}}$	- $6^{\circ} 14^{\prime}$
$6^{\text {h }} 11^{\text {m }}$	$+59^{\circ} 25^{\prime}$
$6^{\text {h }} 16^{\text {m }}$	$+22^{\circ} 34^{\prime}$
$6^{\mathrm{h}} \quad 16^{\mathrm{m}}$	$+58^{\circ} 29^{\prime}$
$6^{\text {h }} \quad 18{ }^{\text {m }}$	$+4^{\circ} 39^{\prime}$
$6^{\text {b }} \quad 19^{\text {m }}$	$+7^{\circ} 9^{\prime}$
$6^{\text {b }} \quad 21^{\text {m }}$	$+12^{\circ} 43^{\prime}$
$6^{\text {h }} 21^{\text {m }}$	$+20^{\circ} 52^{\prime}$
$6^{\text {h }} 22^{\text {m }}$	- $4^{\circ} 41^{\prime}$
$6^{\text {h }} \quad 23^{\mathrm{m}}$	- $6^{\circ} 57^{\prime}$

4, Monocerotis. A triple star; the nearer companion discovered by Burnham; the farther by Knott. Primary A is 6.5, B 9.5, C 10 mag. Measurements according to Dembowski, 1876.:

$$
\begin{array}{lrl}
\text { A B distance } 3.1^{\prime \prime} . & \text { Angle of position } 178^{\circ} \\
\text { A C } & \text { " } 8.9^{\prime \prime} . & " \\
244.5^{\circ}
\end{array}
$$

1376, Star Cluster in Orion, 5^{\prime} to 6^{\prime} in diameter, a rather crowded collection of brilliant and faint stars.

1383, Star Cluster in Pegasus, a beautiful cluster from 7^{\prime} to 8^{\prime} in diameter. With a low power, the field of vision seems filled with numerous stars of 10 to 12 mag. In two places the stars are densely crowded, and one of these places looks like nebula in a small telescope.
$\Sigma 872$, Aurigae. Primary 6.5 , companion 7 mag. The distance $\left(11^{\prime \prime}\right)$ and angle of position (217°) do not seem to vary.
n Geminorum. This yellow star, as discovered by Schmidt, in 1865, varies between 3.2 and 4 mag. Period of variability about 229 days.

5 , Monocerotis, a star of 4.5 mag. of a decided orange colour.
4, Lyncis ($\Sigma 881$). This star, 6.5 mag., has a companion 8 mag., but this latter is so near to the primary that it can be divided only by a most powerful telescope. O. Struve (1847) found $p=95.6^{\circ}, d=0.87^{\prime \prime}$.
μ Geminorum. A yellow star 3 mag., with a very faint companion (11 mag or less) at distance $72^{\prime \prime}$, angle of position 77°.

5, Lyncis (Σ 894), triple, primary 6, the nearer companion 10.5, the farther 8 mag. Burnham (1879) calculated: AB. $\mathrm{p}=139.1^{\circ}, \mathrm{d}=30.3^{\prime \prime}$; $\mathrm{AC}: \mathrm{p}=272.5^{\circ}, \mathrm{d}=95.9^{\prime \prime}$.

8, Monocerotis ($\Sigma 900$). A yellowish star 4.5 mag., with a blueish companion 6.7 mag., distance $13.7^{\prime \prime}$. Can be divided with a small telescope.
T Monocerotis, A variable star, whose light fluctuates between 6.2 and 7.6 mag. within a period of 26.8 days. The changes of brilliancy were detected by Gould in 1871. According to Schoenfeld the maximum and minimum of brilliancy fluctuate somewhat at different periods.

1408, Star Cluster in Monoceros. Consists of 40 or 50 stars of from 10 to 11 mag., rather coarsely seattered upon a nebulous background. This last is difficult to see.

15, Geminorum, yellowish, 6.5 mag., with a blueish-white companion 7.5 mag., distance $31^{\prime \prime}$.

1415, Star Cluster in Monoceros, contains a yellowish star 6 mag. (10 Monocerotis).

11, Monocerotis (Σ 919). Quadruple, A 5.5, B 6, C 6.5, D 12 mag. The three brilliant stars were first seen by Herschel, the fuint companion by Burnham.

Dunér (1871) calculates :

A B Distance		$7.2^{\prime \prime}$	Angle of position 132.2°	
B C	"	$2.3^{\prime \prime}$	"	105.0°
Burnham : A D	$"$	$25.8^{\prime \prime}$	$"$	56.1°

$\overline{\substack{\text { Right } \\ \text { Asconsion } \\ \text { 1880. }}}$	Deciination	
$6^{\mathrm{h}} 24^{\text {m }}$	$+11^{\circ} 22^{\prime}$	£ 921 , Monocerotis, a star of 6.5 mag., with a companion of nearly 8 mag. Distance $16^{\prime \prime}$, angle of position 4°.
$6^{\text {h }} 26^{\text {m }}$	$+4^{\circ} 57^{\prime}$	1424, Star Cluster in Monoceros, visible on a clear night, with the naked eye as a nebulous star. With a telescope it is seen to be a somewhat dense cluster of stars, one of which (12 Monocerotis) is of 6 mag.
$6^{\mathrm{h}} 26^{\mathrm{m}}$	$+10^{\circ} 15^{\prime}$	1425, Nebula in Monoceros. A very interesting object, fairly bright, comet-shaped, or rather fan-shaped, extending from a star of 10 to 11 mag. The whole is probably $1 \frac{1}{\frac{1}{\prime}^{\prime}}$ long.
$6^{\text {h }} 28^{\mathrm{m}}$	$+7^{\circ} 40^{\prime}$	14, Monocerotis ($\Sigma 938$), yellowish-white, 6.5 mag., with a very faint companion (12 mag.) Distance $10^{\prime \prime}$, angle of position 209.9°. .
$6^{\text {b }} 31^{\text {m }}$	$+16^{\circ} 30^{\prime}$	γ Geminorum, a star of 2.5 mag. with 2 faint companions at a considerable distance. Burnham gives the following measurements. A B Distance 141.7 $7^{\prime \prime}$ Angle of position 335.5 ${ }^{\circ}$ A C " 294.7" " 133.0°
$6^{\text {h }} 32^{\mathrm{m}}$	$+10^{\circ} 59^{\prime}$	1435, Star Cluster in Monoceros, large, containing about 40 stars of 9.5 to 12 mag., which are irregularly distributed.
$6^{\text {n }} 34^{\text {m }}$	$+10^{\circ} \quad 0^{\prime}$	$S(15)$ Monocerotis ($\Sigma 950$), the chief star of a coarsely scattered star cluster (G.C. 1440) 6 mag., with two companions, one 9 mag., distance $3^{\prime \prime}$, the other 11.5 mag., distance $16^{\prime \prime}$. The primary is surrounded by a thin veil of nebula, and, as discovered by Winnecke, varies about half a magnitude. The duration of light variability is only 3 days $10^{\mathrm{h}} 38^{\mathrm{m}}$. The colour of this star is described by Struve as green, it is now yellowish.
$6^{\text {b }} 36^{\text {m }}$	$+59^{\circ} 34^{\prime}$	12, Lyncis ($\Sigma 948$), triple, 5.2, 6.1 and 7.4 mag. Discovered by W. Herschel in 1780. The nearer companion is at distance $1.4^{\prime \prime}$; the further at distance $8.7^{\prime \prime}$.
$6^{\text {b }} 37^{\text {m }}$	$+25^{\circ} 15^{\prime}$	E Geminorum. This white star of 3.5 mag., has a companion of 8.5 mag., at distance $111^{\prime \prime}$, angle of position 94°.
$6^{\text {h }} 38^{\mathrm{m}}$	$+43^{\circ} 42^{\prime}$	56, Aurigae. 6 mag., of a clear white colour, with a blueish-white companion 8 mag., at distance $48^{\prime \prime}$, angle of position 21.1°.
$6^{\text {h }} 38{ }^{\text {m }}$	$+55^{\circ} 52^{\prime}$	$\Sigma 958$, Lyncis. 6 mag., consisting of two white stars of almost equal magnitude, at distance $5^{\prime \prime}$.
$6^{\text {h }} 40^{\text {m }}$	$-16^{\circ} 33^{\prime}$	α Canis Majoris (Sirius). The most brilliant fixed star in the heavens; viewed with a powerful telescope, it is of dazzling splendour, and may be compared to a sun. The ancients described Sirius as red, at present it is perfectly white; it has probably changed its colour since the days of Ptolemy. Bessel (in 1844) was the first to declare that Sirius must have a companion, as its proper motion showed irregularities which could be only explained by this hypothesis. In January, 1862, the companion demanded by Bessel's theory was discovered by the younger Clark with an 18 -inch refractor; it was afterwards actually seen with smaller instruments, and Auwers estimated the time of its revolution at 49 years. The companion is 8.5 mag., and in 1860-70 was at distance $10^{\prime \prime}$, but this has gradually decreased, and the companion cannot now be distinguished except by a telescope of great power.

$\begin{gathered} \text { Right } \\ \text { Aconsion } \\ \text { 1880. } \end{gathered}$	Deelination 1880	
$6^{\text {h }} 41^{\text {m }}$	$+41^{\circ} 12^{\prime}$	1451, Star Cluster in Auriga, fairly rich, coarsely seattered, with a double star near the middle. Diseovered by W. Herschel, 3 Feb., 1788.
$6^{\text {b }} 42^{\mathrm{m}}$	$3^{\circ} 3^{\prime}$	1453, Star Cluster in Monoceros. Coarsely scattered, not rich, contains stars of 8 to 11 mag.
$6^{\text {b }} 42^{\mathrm{m}}$	$-20^{\circ} 37^{\prime}$	1454, Star Cluster in Canis Major. A magnifieent object, deseribed and reeognised as a star eluster by Messier. The smallest astronomical telescope will suffice to distinguish separate stars in it. Seen with the lowest power of a refractor, the whole field of vision seems full of stars of various magnitudes. A splendid sight!
$6^{\text {m }} 42^{\text {m }}$	+ $59^{\circ} 34^{\prime}$	14, Lyncis ($\Sigma 963$). A very difficult double star. The primary is 6 mag., and of a golden eolour; the companion 7.1 mag., and of a purple red, according to Struve. Distance $0.8^{\prime \prime}$, angle of position 64.1°; the latter is slowly increasing, while the distance seems to diminish. A very powerful instrument is required to divide the companion from the primary.
$6^{\text {b }} 46^{\text {m }}$	$+0^{\circ} 36^{\prime}$	1465, Star Cluster in Monoceros. 20^{\prime} in diameter, rich in small stars. Near the centre there is a triple star 8 and 9 mag., for which Burnham (1880) gives the following measurements : A B; distance 20.9", angle of position 80°; AC ; distance $8.6^{\prime \prime}$, angle of position 281.9°.
$6^{\text {h }} 48^{\mathrm{m}}$	$+13^{\circ} 20^{\prime}$	38, Geminorum (Σ 982). Primary 5.4 mag., and yellowish, companion 7.7 mag., and blueish. Distance $6.3^{\prime \prime}$, angle of position 164° (1878). The eolours of both stars are relatively intense.
$6^{\text {h }} 48^{\mathrm{m}}$	$+18^{\circ} 8^{\prime}$	1467, Star Cluster in Gemini. A triangular cluster consisting of small stars densely crowded. The whole, in the average telescope, looks like a nebula. Discovered by W. Herschel, 30 Dec., 1783.
$6^{\text {b }} \quad 51^{\text {m }}$	$-13^{\circ} 53^{\prime}$	μ Canis Majoris ($\Sigma 997$), a yellowish star 4.7 mag., with a blueish companion 8 mag., distance $2.5^{\prime \prime}$ (1878), slowly decreasing, angle of position 342°, apparently unchanged since 1831 .
$6^{\text {b }} 52^{\text {m }}$	$+10^{\circ} 25^{\prime}$	1474, Star Cluster in Monoceros, consisting of a large number of coarsely seattered stars of 10 to 11 mag.
$6^{\text {h }} 54^{m}$	$-13^{\circ} 32^{\prime}$	1470, Star Cluster in Canis Major, somewhat scattered, 20^{\prime} in diameter. The stars are from 8 to 11 mag. Diseovered by Herschel, 8 Feb., 1785.
$6^{\text {b }} 56^{\text {m }}$	$+52^{\circ} 56^{\prime}$	$\Sigma 1009$, Lyncis, a double star 6.7 and 6.8 mag., both of a brilliant white colour. Distance $3^{\prime \prime}$, angle of position 156°; this latter has probably decreased since Struve took the measurement in 1830.
$6^{\mathrm{h}} 57^{\mathrm{m}}$	$+20^{\circ} 45^{\prime}$	ζ Geminorum, a star of a deep yellow eolour, 3.7 mag., recognised as variable by J. Schmidt in 1844. The variation of brightness $=0.8$ mag., and lasts 10 days $3^{\mathrm{h}} 43^{\mathrm{m}}$. The decrease in brilliancy is somewhat more rapid than the inerease. ζ has two companions 7 and 10.5 mag . The first at distance $94^{\prime \prime}$, angle of position 352°, the latter $87^{\prime \prime}$, angle of position 84°.

$\begin{gathered} \text { Right } \\ \text { Ascension } \\ 1880 . \end{gathered}$	Declination ${ }_{\text {lsem }}$	
$6^{\text {h }} \quad 57^{\text {m }}$	$-8^{\circ} 10^{\prime}$	1483, Star Cluster in Monoceros, discovered by Messier, 5 April, 1772, and described by him as a cluster of small stars of different magnitudes, near to a star of 7 mag . The cluster consists of stars ranging from 8 to 13 mag., one of them being red in colour. Diameter 30^{\prime}.
$6^{\text {h }} 58^{\text {m }}$	$-15^{\circ} 27^{\prime}$	γ Canis Majoris. According to Montanari, this star was scarcely visible in 1670 ; in 1693 Maraldi found it to be 4 mag. Later on Bode estimated it at 4.5 mag., and Flamsteed at 3 mag. It is apparently variable.
$7^{\text {h }} \quad 0^{\text {m }}$	$+22^{\circ} 53^{\prime}$	R Geminorum. A variable star, discovered by Hind in 1848. At maximum it is 6.5 mag., at minimum less than 12 mag. The star is of a deep red colour, and the variation in brilliancy is somewhat irregular. According to Schoenfeld, the brilliancy of the star at maximum is often the same for weeks at a time.
$7^{\text {h }} \quad 0^{\text {m }}$	$+27^{\circ} 23^{\prime}$	1490, Star Cluster in Gemini, discovered by W. Herschel, 11 Mar, 1785. A coarsely seattered cluster which contains within itself another cluster of small size. This latter, Rosse says, consists of six or seven stars of from 10 to 12 mag.
$7^{\text {m }} \quad 2^{\mathrm{m}}$	$+10^{\circ} 14^{\prime}$	R Canis Minoris. A variable star, discovered at Bonn Observatory in 1854. At maximum it scarcely reaches 7 mag.; at minimum it is 9.5 , sometimes 10 mag. Period, about 335 days. This star has so far received but little attention.
$7^{\text {h }}-4^{\text {m }}$	$-26^{\circ} 12^{\prime}$	\& Canis Majoris. A red star, 2 mag., considered by Gould to be variable.
$7^{\text {b }} 10^{\text {m }}$	$+13^{\circ} 59^{\prime}$	1508, Star Cluster in Gemini, consisting of numerous stars of 10 mag. and under. Irregularly round in shape and rather denser towards the centre. The whole is 4^{\prime} in diameter.
$7^{\text {m }} 11^{\text {m }}$	$+16^{\circ} 45^{\prime}$	λ Geminorum ($\Sigma 1061$). A star of 4 mag., of a greenish-blue light, with a companion 10.3 mag. Englemann (1882-87) calculates: distance $9.5^{\prime \prime}$, angle of position 32.1°.
$7^{\text {h }} 12^{\mathrm{m}}$	$+73^{\circ} 19^{\prime}$	Σ 1051, Camelopardalis, triple, found to be so by Struve. The primary is 7 , the nearer companion 9 , the farther 7 mag . The former at distance $1.2^{\prime \prime}$, angle of position 268°, the latter at distance $31^{\prime \prime}$, angle of position 81.5°.
$7^{\text {h }} \cdot 12^{\text {m }}$	$13^{\circ} 0^{\prime}$	1511, Nebula in Canis Major. A large nebula, discovered by W. Herschel, 31 Jan., 1785, and described by him as resembling a parallelogram in shape, with a streak towards the south. The nebula has been imperfectly sketched by J. Herschel and Lassell. The best representation is that of Tempel. (Vide sheet xviii.)
$7^{\text {b }} 12^{\mathrm{m}}$	$-15^{\circ} 25^{\prime}$	1512, Star Cluster in Canis Major, discovered by Caroline Herschel. Large and rather dense.
$7^{71} \quad 13^{\text {m }}$	$+55^{\circ} 30^{\prime}$	19, Lyncis ($\Sigma 1062$). A star of 6.5 mag., with a companion 7.5 mag., distance $15^{\prime \prime}$.
$7^{\text {h }} 13^{\text {m }}$	$+22^{\circ} 12^{\prime}$	§ Geminorum (Σ 1066). A yellowish star, 3.2 mag., with a reddish companion 8.2 mag Distance $7^{\prime \prime}$, angle of position 205.2° (according to Englemann, 1883).
$7^{\text {b }} 14^{\text {m }}$	$-24^{\circ} 44^{\prime}$	1513, Star Cluster in Canis Major, fairly large, contains several brilliant stars. The brightest of these (30 Canis) is 6.5 mag., with several companions, one of 9 mag., distance $84^{\prime \prime}$, angle of position 78°.

$\begin{gathered} \text { Right } \\ \text { Aeconsion } \\ \text { Reso } \end{gathered}$	Declination 1880	
$7^{\text {b }} 22^{\text {m }}$	$+14^{\circ} 1^{\prime}$	1534, Star Cluster in Gemini, fairly rich, contains about 40 stars of 10 mag., and several fainter ones. Lord Rosse saw in this place 70 stars of 11 mag. and under, within a space 15^{\prime} in diameter.
$7^{\text {h }} 22^{\text {m }}$	$-11^{\circ} 19^{\prime}$	$\Sigma 1097$, Navis, a star of 6 mag. with 4 companions. The primary (A. has a companion (B) at distance $20^{\prime \prime}$, angle of position 312°, and another companion (C) at distance $20^{\prime \prime}$, anglo of position 311°. In 1875 , Dombowski discovered that A is itself double having a companion 8 mag., $d=0.8^{\prime \prime}, p=166^{\circ}$. Then Burnham found another very faint star, $d=31^{\prime \prime} p=41^{\circ}$.
$7^{\text {b }} 25^{\text {m }}$	$9^{\circ} 32^{\prime}$	U Monocerotis, a variable star, identified as such by Gould in 1872. At maximum it is 6 mag., at minimum somewhat under 7 mag. Period of variability, 46 days.
$7^{\text {b }} 25^{\text {m }}$	+65 ${ }^{\circ} 57^{\prime}$	1541, Nebula in Camelopardalis, very large, rather elongated, moderately bright with an increase of brilliancy at the centre.
$7^{\text {h }} 26^{\text {m }}$	$+8^{\circ} 34^{\prime}$	S Canis Minoris, recognised as variable by Hind in 1856. At maximum it is sometimes 7 , but often only 8 mag., at minimum less than 11 mag. Period 332 days.
$7^{\text {b }} 27^{\text {m }}$	$+32^{\circ} \quad 9^{\prime}$	a Geminorum (Castor), one of the most beautiful double stars in the heavens, 2.7 and 3.7 mag. It can be divided with a small telescopo (distance 5.5 $5^{\prime \prime}$). Both stars give a greenish light. The period of revolution round their common centre of gravity is about 1,000 years. Near by are two stars 10 and 11 mag.
$7^{\text {b }} 31^{\text {m }}$	$+21^{c} 50^{\prime}$	1549, Star Cluster in Gemini, a beautiful object discovered by W. Herschel, 19 Nov., 1783. The stars are numerous and densely crowded. Diameter 6^{\prime}.
$7^{\text {b }} 31^{\text {m }}$	$-14^{\circ} 14^{\prime}$	£ 1121, Navis, a double star, 7 and 7.5 mag., distance $7.5^{\prime \prime}$. Close by is the double star $\Sigma 1122,6.5$ and 8.5 mag., distance $19.6^{\prime \prime}$. This belougs to the following cluster.
$7^{\text {h }} 31^{\text {m }}$	$-14^{\circ} 12^{\prime}$	1551, Star Cluster in Navis, a rich group, 15 ' in diameter, of small stars rather densely collected. Among them are some fairly brilliant stars. Diseovered by W. Herschel, 4 Feb., 1875.
$7^{\text {li }} 33^{\mathrm{m}}$	+ $5^{\circ} 32^{\prime}$	α Canis Minoris (Procyon), a brilliant star 1 mag. It has several very faint companions. Lamont saw one of them (B) at distance 57", angle of position 262°. There is another small star at distance $327^{\prime \prime}$, angle of position 84°, which is (as discovered by Bird) itself doublo. There is also another companion $d=643^{\prime \prime} p=99.7^{\circ}$. This too, is double ($\Sigma 1126$) and consists of two stars 6.5 and 7.5 mag ., distance $1.5^{\prime \prime}$. Burnham has also calculated the positions of two other companions of $\alpha: d=97^{\prime \prime}$, $p=22.7^{\circ}$., and $d=47.8^{\prime \prime}, p=82.3^{\circ}$. This latter is very faint (13 mag.)
$7^{\text {h }} 36^{\text {m }}$	$+23^{\circ} 44^{\prime}$	S Geminorum, recognised as variable by Hind in 1848. The star is of a yellowish red colour, and at maximum is scarcely 8 mag., at minimum it falls below 13 mag., or in other words disappears entirely for the average telescope. Period 294 days. The variability is not quite regular.
$7^{\text {h }} 36^{\text {m }}$	$+64^{\circ} 21^{\prime}$	Σ 1127, Camelopardalis. Primary 6 mag. with one companion 8 mag., $d=5.2^{\prime \prime}, p=340^{\circ}$, and a second (10 mag.) $d=11.2^{\prime \prime}, p=175^{\circ}$

$\begin{gathered} \text { Right } \\ \text { Ascension } \\ 1880 . \end{gathered}$	Declination 1880.	
$7^{\mathrm{h}} \quad 56^{\mathrm{m}}$	$+9^{\circ} 46^{\prime}$	1617, Nebula in Canis Minor, fairly faint, small ($30^{\prime \prime}$), elongated, with sudden increase of brilliancy at the centre.
$8^{\text {h }} \quad 1^{m}$	- $8^{\circ} 54^{\prime}$	$\Sigma 1183$, Monocerotis, a yellowish white star of 5.5 mag . with a companion 8 mag., distance $31^{\prime \prime}$.
$8^{\text {h }} \quad 3^{\text {m }}$	- $2^{\circ} 38^{\prime}$	29, Monocerotis ($\Sigma 1190$), a yellowish star 5 mag. with two faint companions 9.5 and 9 mag., distance $31.6^{\prime \prime}$ and $67^{\prime \prime}$, angle of position 105° and 245°.
$8^{\text {h }} \quad 5^{\text {m }}$	$-12^{\circ} 34^{\prime}$	1630, Star Cluster in Nayis, 20^{\prime} in diameter, coarsely scattered, rich in small stars, among them a double star. Discovered by W. Herschel, 31 Jan., 1785.
$8^{\text {b }} \quad 5^{m}$	$+18^{\circ} \quad 1^{\prime}$	ζ Cancri ($\Sigma 1196$), a triple star, consisting of a double star 5.5 and 6 mag., distance only $1^{\prime \prime}$, and a farther companion 5.5 mag., distance $5.4^{\prime \prime}$. W. Herschel saw the inner companion in 1781, but later on, neither he nor South could distinguish it. Struve was the first to find it again in 1826.
$8^{\text {h }} \quad 6^{\mathrm{m}}$	$-12^{\circ} 34^{\prime}$	avis, a nebulo
$8^{\text {h }} \quad 8^{m}$	- $5^{\circ} 26^{\prime}$	1637, Star Cluster in Monoceros. Fairly large and crowded with stars of 9 mag., also a pretty double star.
$8^{\text {h }} 10^{\text {m }}$	$+12^{\circ} 6^{\prime}$	R Cancri, discovered to be variable by Schwerd in 1829. The star is yellowish red, at maximum 6.5 at minimum 12 mag. The period is 354 days and seems to be gradually lengthening.
$8^{\text {h }} 15^{\text {m }}$	$+17^{\circ} 40^{\prime}$	V Cancri, found to be variable, by Auwers in 1870. At maximum it is under 7 mag., at minimum less than 12 mag. The period is nearly 270 days.
$8^{\text {h }} 20^{\mathrm{m}}$	$+27^{\circ} 20^{\prime}$	φ^{2} Cancri ($\Sigma 1223$), 6 mag. with a companion 6.5 mag., distance $5^{\prime \prime}$. Divided long ago by Chr. Mayer.
$8^{\text {h }} \quad 20 \mathrm{~m}$	$+24^{\circ} 56^{\prime}$	v^{1} Cancri ($\Sigma 1224$) 6 mag. with a companion 7 mag., distance 5.9".
$8^{\text {h }} 25^{\mathrm{m}}$	$+18^{\circ} 30^{\prime}$	ncri, a yellowish star 5.5 mag. with a faint companion, distance 61".
$8^{\text {h }} 299^{\text {m }}$	$+7^{\circ} 2^{\prime}$	$\Sigma 1245$, Hydrae, a star 6.5 mag. with a somewhat fainter companion, distance $10.3^{\prime \prime}$, angle of position 25°. No change in position has beer noticed during the last 60 years.
$8^{\text {h }} \quad 33^{\mathrm{m}}$	$+20^{\circ} 22^{\prime}$	1681, Star Cluster in Cancer, visible to the naked eyc, the so-called "Prosepe." With a telescope this cluster, which is very rich in stars, can be easily resolved.
$8^{\text {b }} 37^{\text {m }}$	$+19^{\circ} 28^{\prime}$	S Cancri, found to be variable by Hind in 1848. This somewhat yellowish variable belongs to the Algol type. At maximum it is 8.2, at minimum 9.8 mag. Period 9 days $11^{\mathrm{h}} 38^{\mathrm{m}}$. The decrease in brilliancy lasts $8 \frac{1^{\mathrm{h}}}{}$; the increase 13^{h}.
$8^{\text {h }} \quad 39^{\mathrm{m}}$	$+29^{\circ} 12^{\prime}$, Cancri ($\Sigma 1268$) 4.5 mag. with a companion 6.5 mag., distance $30.7^{\prime \prime}$, angle of position 307.3°. Discovered to be double by Herschel, 8 Feb., 1782.
$8^{\mathrm{h}} \quad 40^{\mathrm{m}}$	$+78^{\circ} 40^{\prime}$	1091, Nebula in Camelopardalis, fairly bright, and tolerably large, with an increase of brilliancy towards the centre, at first gradual, then sudden.

 companion 7.8 mag., distance $3.5^{\prime \prime}$. Holden, with the great refractor at Washington, saw another very faint companion, $\mathrm{d}=20^{\prime \prime}, \mathrm{p}=194^{\circ}$. [Schiaparelli finds the primary to be itself double, (1875-85).-Edir.]

1711, Nebula in Ursa Major, fairly brilliant, large, brighter at first gradually, then suddenly towards the centre, where is a star 10 mag.

1712, Star Cluster in Cancer, discovered by Messier, and described as a star cluster with nebula. Herschel resolved the whole into stars of from 8.5 to 12 or 13 mag. They number over 200. There does not seem to be any common centre to the cluster. A beautiful object!

1713, Nebula in Leo Minor. A very faint nebula followed by a star of 8.5 mag. Rather more brilliant towards the centre.

15, Hydrae. This star, 6 mag., has (as discovered by Herschel) a companion 7 mag., at distance $46^{\prime \prime}$, angle of position 356°. Burnham divided the primary into two points of light at $0.5^{\prime \prime}$ distance, and found an additional companion at distance $50^{\prime \prime}$, angle of position 52°.
S Hydrae, variable, discovered by Hind in 1848. The star is a yellowish-red. At maximum it is sometimes 7.5, though often only 8 mag.; at minimum it is under 12 mag. Period 256.4 days.
ι^{2} Cancri ($\Sigma 1291$). 6 mag., with a companion 6.7 mag., distance $1.4^{\prime \prime}$.
T Hydrae. Found to be variable by Hind in 1851. At maximum seems to be 7 mag., though often only 8 mag., at minimum it is under 12.5 mag. Period 289.4 days.

- Ursa Majoris, 3 mag., with a companion 10 mag., distance $10^{\prime \prime}$, angle of position 357°.
α Cancri. A star of 4 mag., with a very faint companion, distance $11.4^{\prime \prime}$, angle of position 325°.

66, Cancri ($\Sigma 1298$). A white star of 6.5 mag., with a companion 8 mag., distance $4.6^{\prime \prime}$.

67, Cancri. A star of 6.5 mag., with a remote satellite. It is at distance $103^{\prime \prime}$, angle of position 323°.

1750, Nebula in Ursa Major, rather faint, but extensive. Rosse's telescope shows this object as a formless, nebulous mass of an uneven character.
σ^{2} Ursae Majoris ($\Sigma 1306$). 5 mag., and somewhat greenish, with a companion 8 mag., distance 2.6", angle of position 245°.
Σ 1311, Cancri. A star of 7 mag., with a companion of equal brilliancy, distance $7^{\prime \prime}$.

1765, Nebula in Ursa Major, faint, fairly large, with a sudden increase of brightness towards the centre, with a kind of nucleus.

1781, Nebula in Ursa Major, fairly brilliant and large, with an increase of brightness towards the centre, where there is a star. Herschel thought it resolvable.
θ Hydrae, 4 mag., with a companion 11 mag., distance $53^{\prime \prime}$, angle of position 175°.

$\begin{gathered} \text { Right } \\ \text { Ascension } \\ 1880 . \end{gathered}$	Declination ${ }_{\text {1880. }}$	
$9^{\text {b }} 11^{\text {m }}$	$+35^{\circ} 52^{\prime}$, Lyncis, 6.5 mag. with a companion 7 mag.
$9^{\text {h }} 11^{\text {m }}$	$+37^{\circ} 19^{\prime}$	38, Lyncis ($\Sigma 1334$), a star of 4 mag. with a companion 6.7 mag., distance $2.8^{\prime \prime}$, angle of position 237°.
$9^{\text {l }} 12^{\text {m }}$	$+34^{\circ} 15^{\prime}$	1811, Nebula in Lynx, fairly brilliant, of moderate size and considerably brighter on its succeeding side. To the south are 3 small stars.
$9^{\text {h }} 14^{\text {m }}$	$+51^{\circ} 30^{\prime}$	1823, Nebula in Ursa Major, fairly brilliant, 6^{\prime} in diameter. In Rosse's telescope it shows some resemblanee to the nebula in Andromeda.
$9^{\text {b }} 14^{\text {m }}$	$+50^{\circ} \quad 3^{\prime}$	39, Lyncis ($\Sigma 1340$), 6.5 mag. with a faint companion 8.5 mag., distance $7^{\prime \prime}$.
$9^{\text {h }} 21^{\text {m }}$	$+46^{\circ} \quad 8^{\prime}$	41, Ursae Majoris, 6.5 mag. with companion 8 mag., distance, $82^{\prime \prime}$, angle of position 162°.
$9^{\text {h }} \quad 22^{\text {m }}$	$+9^{\circ} 34^{\prime}$	${ }^{\omega}$ Leonis ($\Sigma 1356$), a difficult double star 6 and 7 mag., both yellowish. The distance is, at times, so small, that even the most powerful telescopes show only an elongated star. Engelmann (1884) calculated: distance $0.66^{\prime \prime}$, angle of position 91.4°. The motion of the companion seems to indicate 110 years as the period of revolution.
$9^{\text {b }} \quad 22^{\text {m }}$	$+63^{\circ} 35^{\prime}$	23, Ursae Majoris ($\Sigma 1351$), 3.8 mag. with a companion 9 mag., distance $23^{\prime \prime}$, angle of position 272°.
$9^{\text {b }} \quad 23^{\text {m }}$	$-2^{\circ} 15^{\prime}$	τ^{1} Hydrae, 5 mag. with a satellite 8 mag., distance $67^{\prime \prime \prime}$, angle of position 3°.
$9^{\text {b }} 25^{\text {m }}$	$+22^{\circ} 2^{\prime}$	1861, 1863, Nebula in Leo, large and brilliant, appearing as a double nebula in powerful telescopes; with a very strong instrument a third nebula is visible. According to Tempel, the whole is a large, spindle-shaped nebula, at least 15^{\prime} long, with 3 nodes, of which the southernmost is fainter than the northernmost, and the middle one is of a stellar nature and very brilliant. The spindle shape is ill-defined towards the north.
$9^{\text {h }} 26^{\text {m }}$	$+10^{\circ} 15^{\prime}$	6, Leonis, 6 mag., somewhat reddish with a companion 9 mag., distance $38.8^{\prime \prime}$, angle of position 74.3°. The position of the companion has not altered since Herschel's time.
$9^{\text {h }} 29^{\text {m }}$	+ $14^{\circ} 55^{\prime}$	7, Leonis, a star of 6 mag. with a companion 8 mag., distance $42^{\prime \prime}$, angle of position 79.5°.
$9^{\text {h }} 38^{\text {m }}$	$+35^{\circ} 4^{\prime}$	R Leonis Minoris, a variable star, identified as such by Schoenfeld in 1863. At maximum it is 6 mag., sometimes only 7.5 mag. : at minimum it is under 11 mag. Period 375 days.
$9^{\text {h }} 39^{\text {m }}$	$+72^{\circ} 50^{\prime}$	1909, Nebula in Ursa Major, about 1^{\prime} in extent, elongated, fairly brilliant, with a nucleus in the centre.
$9^{\text {h }} 41^{\text {m }}$	$+11^{\circ} 59^{\prime}$	R Leonis, a variable star identified as such by Koch in 1782 , of a deep red colour, and gives a peculiar speetrum. At maximum it is 5 at minimum 10 mag. Period 313 days.
$9^{\text {h }} 44^{\text {m }}$	$+54^{\circ} 38^{\prime}$	φ Ursae Majoris, an exceedingly close double star 5 and 5.5 mag. distance ouly $0.2^{\prime \prime}$. It ean only occasionally be divided even with the most powerful telescope.
$9^{\text {h }} 46^{\text {m }}$	$+69^{\circ} 41^{\prime}$	1949, 1950, Nebula in Ursa Major, two nebulæ discovered by Bode at 30^{\prime} distance frum one another, the preceding one 15^{\prime} long, is the more brilliant of the two, and has a nucleus like a star of 8.5 mag. The succeeding one is smaller and fainter.

$\begin{gathered} \hline \text { Right } \\ \text { Ascension } \\ 1880 . \end{gathered}$	Declination ${ }_{\text {liso. }}$	
$9^{\text {h }} 48^{\text {m }}$	$+5^{\circ} 30^{\prime}$	9 , Sextantis. A reddish star, 7 mag., with a companion 8 mag., distance $53^{\prime \prime}$, angle of position 292°.
$9^{\text {h }} 59^{\text {m }}$	$7^{\circ} \quad 7^{\prime}$	2008, Nebula in Sextans, discovered by Herschel, fairly brilliant, with an increase of light towards the centre which resembles a star of 9.5 mag. Very faint when viewed with a small telescope.
$10^{\mathrm{h}} 2^{\mathrm{m}}$	$+12^{\circ} 33^{\prime}$	a Leonis (Regulus). A brilliant star with a beautiful spectrum. At distance 3^{\prime} is a star 8.5 mag., which has the same proper motion as α. There is an extremely faint companion at distance $3.3^{\prime \prime}$, angle of position 88.5°.
$10^{\mathrm{h}} 7^{\mathrm{m}}$	$+74^{\circ} 0^{\prime}$	2024, Nebula in Draco, fairly brilliant, large, round, with an increase of brilliancy towards the centre, at first gradual then abrupt.
$10^{\mathrm{h}} 8^{\mathrm{m}}$	$+4^{\circ} 1^{\prime}$	2038, Nebula in Sextans, fairly brilliant, small, round, with a sudden increase of brightness towards the centre. It is followed in the field of vision by another fainter nebula not noticed by W. Herschel.
$10^{\mathrm{h}} 13^{\mathrm{m}}$	$+20^{\circ} 27^{\prime}$	γ Leonis ($\Sigma 1424$). A golden-yellowish star, 2 mag., with a greenishred companion of 3.5 mag., distance $3.4^{\prime \prime}$. According to Struve, the most beautiful star in the northern heavens. Singularly enough, W. Herschel gives both stars as white.
$10^{\mathrm{h}} 19^{\mathrm{m}}$	$-18^{\circ} \quad 2^{\prime}$	2102, Nebula in Hydra. A planetary nebula nearly 1^{\prime} in diameter, fairly brilliant. W. Herschel saw no traces of a starry nature in it. To Secchi, on the other hand, it appeared quite differently; within a circular nebula he distinguised two star clusters, which are bound together by a shining ring composed of two semi-circles of stars. There is also a star in the nebulous space at the centre. Tempel thinks the nebula very wonderful. He considers it to be a small, oval, brilliant dise of light surrounded by sharply defined, densely collected stars. In the southern central and northern portions shine out a few stars of greater brilliancy. "These," says Tempel, "like living pulsating points, form a striking contrast to the dark background which is totally free from nebula."
$10^{\text {h }} 21^{\text {m }}$	$+29^{\circ} \quad 7^{\prime}$	2104, Nebula in Leo Minor, fairly brilliant, elliptical in shape, with a kind of brilliant nucleus in the centre.
$10^{\text {b }} 29^{\text {m }}$	$+9^{\circ} 16^{\prime}$	49, Leonis ($\Sigma 1450$). 6 mag., with a companion 9 mag., at distance $2.4^{\prime \prime}$, the position of which does not seem to alter.
$10^{\mathrm{h}} 31^{\mathrm{m}}$	$+54^{\circ} 8^{\prime}$	2158, Nebula in Ursa Major, planetary, with blurred edges, containing 2 stars of 10 mag.
$10^{\text {h }} 36^{\text {m }}$	$+69^{\circ} 24^{\prime}$	R Ursae Majoris. A variable star, recognised by Pogson in 1853. At maximum it is sometimes 6 , though often only 8 mag., at minimum 12 mag. Period, 303 days.
$10^{\text {h }} 37^{\text {m }}$	$+25^{\circ} 33^{\prime}$	2178, Nebula in Leo Minoris, fairly bright, with an increase of brilliancy towards the centre. There is a star surrounded by the nebula. Rosse sees spiral coils round a luminous centre.
$10^{\mathrm{h}} 37^{\mathrm{m}}$	$+12^{\circ} 20^{\prime}$	2184, Nebula in Leo, discovered by Méchain, and described as a very faint starless nebula ; it really is fairly brilliant, large and round, brighter at the centre, with a nucleus resembling a star of 10 mag .
$10^{\text {b }}$	$+5^{\circ} 23^{\prime}$	35, Sextantis ($\Sigma 1466$). 6.5 mag., with a companion 7 mag., distance $67^{\prime \prime}$, angle of position 240°.

$\begin{gathered} \text { Right } \\ \text { Ascension } \\ 1880 . \end{gathered}$	${ }_{\text {Deelination }}^{\text {1880. }}$	
$10^{\mathrm{h}} 40^{\mathrm{m}}$	$+12^{\circ} 27^{\prime}$	2194, Nebula in Leo, very brilliant, irregularly round in shape, with a nucleus, probably resolvable.
$10^{\mathrm{h}} 42^{\mathrm{m}}$	$+13^{\circ} 16^{\prime}$	2203, 2207, Nebula in Leo, double, fairly brilliant and large, the second nebula has a nucleus like a star of 9.5 mag. A third very faint nebula follows and forms a triangle with the other two.
	$-8^{\circ} 10^{\prime}$	41, Sextantis. Triple. The primary is 5 , the farther companion 9 , the nearer 11 mag. Burnbam gives (1879) the following measurements: A B d $=26.9^{\prime \prime}, \mathrm{p}=304^{\circ} ; \mathrm{ACd}=233^{\prime \prime}, \mathrm{p}=72^{\circ}$ This companion is not visible except in a very powerful telescope.
$10^{\text {h }} 47^{\text {m }}$	$+57^{\circ} 37^{\prime}$	2245, Nebula in Ursa Major. Fairly brilliant, of moderate size, and irregularly circular in shape, gradually brighter towards tho centre. Followed to the northward by a star 10 mag., distance 2^{\prime}.
$10^{\mathrm{h}} 49^{\mathrm{m}}$	$+25^{\circ} 24^{\prime}$	54 , Leonis ($\Sigma 1487$), a star 4.5 mag. with a blueish companion 7 mag., distance $6.5^{\prime \prime}$.
$10^{\mathrm{h}} 52^{\mathrm{m}}$	$+59^{\circ} 33^{\prime}$	Σ 1495, Ursae Majoris, 6 mag., yellowish, with a companion 8 mag., distance $34^{\prime \prime}$.
$10^{\mathrm{b}} 53^{\mathrm{m}}$	$+29^{\circ} 37^{\prime}$	2274, Nebula in Leo Minor, large, brilliant, supposed by Herschel to be a globular star cluster at an immeasurable distance.
$10^{\mathrm{h}} 54^{\mathrm{m}}$	$+4^{\circ} 16^{\prime}$	2279, Nebula in Leo. According to Tempel, this is a large and thick spindle-shaped nebula 5^{\prime} long by 1.5^{\prime} broad, with 3 distinct nebular nodes in its major axis. In all of these faint stars are visible. About 6^{\prime} north of the middle node, Tempel repeatedly observed a small nebula.
$10^{\mathrm{h}} 55^{\mathrm{m}}$	$+57^{\circ} 2^{\prime}$	β Ursae Majoris. A greenish-white star, 2.3 mag., with a very faint companion, distance $245^{\prime \prime \prime}$, angle of position 354°.
$10^{\mathrm{h}} 57^{\mathrm{m}}$	$+28^{\circ} 37^{\prime}$	2287, Nebula in Leo Minor, fairly brilliant, with what looks like a nucleus in the centre. According to Herschel this nebula is really a resolvable star cluster.
$10^{\mathrm{b}} 59^{\mathrm{m}}$	$+0^{\circ} 37^{\prime}$	2301, Nebula in Leo, fairly large, oval, with a star-shaped nucleus. Several stars follow it.
$11^{\mathrm{h}} 4^{\mathrm{m}}$	$+56^{\circ} 19^{\prime}$	2318, Nebula in Ursa Major, discovered by W. Herschel, 7 April, 1789, elongated, fairly brilliant, with a star in the centre. According to Herschel, however, the latter is merely accidentally projected on the nebula.
$11^{\mathrm{h}} 8^{\mathrm{m}}$	$+55^{\circ} 40^{\prime}$	2343, Nebula in Ursa Major, large, planetary, discovered by Méchain in 1781. According to J. Herschel it is $2^{\prime} 40^{\prime \prime}$ in diameter and of uniform brilliancy tbroughout. Rosse sees two dark openings in the nebula with a star in each. Huggins considers it to be a mass of incandescent gas.
$11^{\text {b }} 9^{\text {m }}$	$+53^{\circ} 26^{\prime}$	$\Sigma 1520$, Ursae Majoris. A star of 6 mag., with a companion 8 mag., distance $13^{\prime \prime}$.
$11^{\mathrm{h}} 9^{\mathrm{m}}$	$+18^{\circ} 46^{\prime}$	2352, Nebula in Leo. A faint nebula, considered by d'Arrest to be variable. Schoenfeld found it to be brilliant in 1861, but in 1863 it was occasionally iuvisible. At present it is very faint.
$11^{\mathrm{h}} 11^{\mathrm{m}}$	$+59^{\circ} 26^{\prime}$	2360, Nebula in Ursa Major, fairly brilliant, but small, with a nucleus.
$11^{\mathrm{h}} 12^{\mathrm{m}}$	$+58^{\circ} 39^{\prime}$	2362, Nebula in Ursa Major, fairly brilliant, of moderate size, much brighter towards the centre, with what seems to be a nueleus.
$1^{\mathrm{h}} 12^{\text {m }}$	$+32^{\circ} 12^{\prime}$	ξ Ursae Majoris ($£ 1523$). A yellowish star, 4 mag., with a greyishwhite companion 5 mag. This latter moves with great rapidity, its period of revolution being only 60 years. Distance in $18821.9^{\prime \prime}$, but now rapidly increasing.

Burnham found another star at distance $77^{\prime \prime}$, angle of position 345°. He also found D to be a very close double star 6 and 11 mag., distance $1.5^{\prime \prime}$.

2600, Nebula in Ursa Major, a fairly brilliant nebula 3^{\prime} to 4^{\prime} in diameter, with an increase of density towards the centre.

65, Ursae Majoris ($\Sigma 1579$), 6 mag., with a blueish companion 8.5 mag., distance $3.7^{\prime \prime}$. There is also a star of 6.5 mag. at distance $114^{\prime \prime}$.

2635, Nebula in Ursa Major, a faint nebulous appearance between two stars, 7^{\prime} long by 4^{\prime} broad, according to Herschel. Tempel estimates it as at the most only $2 \frac{1^{\prime}}{}{ }^{\prime}$ in diameter, and says he sees 3 brilliant stars round its speckled centre.

2660, Nebula in Ursa Major, discovered by W. Herschel, 12 April, 1789, brilliant, 5^{\prime} long by $1 \frac{1^{\prime}}{}{ }^{\prime}$ broad, increasing in brightness towards the centre, with a brilliant nucleus.

2680, Nebula in Ursa Major, brilliant, fairly large, with a sudden increase of brightness towards the centre. Rosse finds it to be of spiral structure.

	Declination	
$11^{\text {b }} 58^{\text {m }}$	$+22^{\circ} 8^{\prime}$	2, Comae Berenices (Σ 1596), 6 mag., with a companion 7.5 mag., distance $3.7^{\prime \prime}$.
$12^{\mathrm{h}} 1^{\mathrm{m}}$	$+43^{\circ} 44^{\prime}$	2723, Nebula in Canes Yenatici, fairly bright, elongated, with a very brilliant nucleus. Discovered by Herschel 14 Jan., 1788.
$\backslash 12^{\mathrm{h}} 4^{\mathrm{m}}$	$+19^{\circ} 13^{\prime}$	2752, Star Cluster in Coma Berenices, of moderate size, very brilliant, globular, the stars are more densely collected towards the centre.
$12^{\mathrm{b}} 5^{\mathrm{m}}$	$+40^{\circ} 33^{\prime}$	Σ 1606, Canum Yenaticorum. A star of 6 mag., with a conipanion 7 mag., distance $1.4^{\prime \prime}$.
$12^{\text {b }} 7^{m}$	$+15^{\circ} 34^{\prime}$	2786, Nebula in Coma Berenices, a large pale nebula 15 ' long, with a star-like centre. Diseovered by Méchain 5 Mar., 1781. Tempel found another small round nebula to the southward.
$12^{\text {b }} 10^{\text {m }}$	$+41^{\circ} 20^{\prime}$	2, Canum Yenaticorum ($\Sigma 1622$), a reddish star 5.5 mag., with a blueish companion 8 mag., distance $11.4^{\prime \prime}$, angle of position 260°. The colours are fairly deeided.
$12^{\mathrm{h}} 10^{\mathrm{m}}$	$+13^{\circ} 48^{\prime}$	2806, Nebula in Yirgo. 9^{\prime} to 10^{\prime} long, brighter in the centre. Discovered by Herschel 8 April, 1784. It is spindle-shaped, and Tempel saw two accompanying nebula. The one preceding it to the south is 5^{\prime} long, oval in shape, and has 3 brilliant nodes; it is situated towards the centre of the principal nebula : $-35^{8}-6 \frac{1^{\prime}}{2}$. To the south there follows a small star $10-11$ mag. The companion nebula on the north, which follows it, is round, 1^{\prime} in diameter, and very faint.
$12^{\text {h }} 12^{m}$	$-3^{\circ} 17^{\prime}$	$\Sigma 1627$, Yirginis, 6 mag., with a companion 6.5 mag., $\mathrm{d}=20^{\prime \prime}, \mathrm{p}=$ 196°.
$12^{\text {h }} 13^{\mathrm{m}}$	$+15^{\circ} 4^{\prime}$	2838, Nebula in Coma Berenices. Discovered by Méchain 15 Mar., 1781, and described as a starless nebula. Vogel observed it with the 8 -inch refractor at Lcipsic, and found it to be large, brilliant, and apparently resolvable at the centre, where there are two bright starlike points. With magnifying power 192, a spiral arrangement was visible.
$12^{\mathrm{h}} 13^{\mathrm{m}}$	$+47^{\circ} 59^{\prime}$	2841, Nebula in Ursa Major, brilliant, with a nueleus, fairly large. Discovered by Herschel. No trace of resolvability. A continuous spectrunı shows that this nebula is a very distinet star eluster.
$12^{\mathrm{h}} 13^{\mathrm{m}}$	$-18^{\circ} 35^{\prime}$	R Corvi, recognised as variable by Karlinski in 1867. At maximum it generally reaches 7 mag.; at minimum it is 11.5 mag. Period 319 days.
$12^{\mathrm{h}} 16^{\mathrm{m}}$	$+5^{\circ} 8^{\prime}$	2878, Nebula in Yirgo. Discovered by Messier 1779. A very faint nebula in which Herschel recognised two nuclei.
$12^{\mathrm{h}} 16^{\mathrm{m}}$	$+26^{\circ} 31^{\prime}$	12, Comae Berenices, 5 mag., with a companion 8 mag. Distance $66^{\prime \prime}$, angle of position 169°.
$12^{\mathrm{h}} 17^{\mathrm{m}}$	$+16^{\circ} 29^{\prime}$	2890, Nebula in Coma Berenices. Discovered by Méchain 15 Mar., 1781, fairly large, round and faint.
$12^{\mathrm{h}} 19^{\mathrm{m}}$	$+13^{\circ} 34^{\prime}$	2930, Nebula in Yirgo, a fairly brilliant, circular nebula, which suddenly increases in brightness towards the centre. Discovered by Messier.
$12^{\text {h }} 19^{\mathrm{m}}$	$+18^{\circ} 52^{\prime}$	2946, Nebula in Coma Berenices. Diseovered by Méchain, and described as faint and starless. Herschel calls it brilliant. A star 9 mag., follows 2 ' south ward.

	Decilination 18.
$12^{\mathrm{h}} 20^{\text {m }}$	$+13^{\circ} 36^{\prime}$
$12^{\mathrm{h}} 21^{\mathrm{m}}$	$+31^{\circ} 53^{\prime}$
$12^{\mathrm{h}} 22^{\mathrm{m}}$	$+44^{\circ} 45^{\prime}$
$12^{\mathrm{h}} 23^{\mathrm{m}}$	$+26^{\circ} 34^{\prime}$
$12^{\mathrm{h}} 24^{\mathrm{m}}$	$+8^{\circ} 40^{\prime}$
$12^{\mathrm{h}} 24^{\mathrm{m}}$	$+42^{\circ} 18^{\prime}$
$12^{\mathrm{h}} 24^{\mathrm{m}}$	$-15^{\circ} 51^{\prime}$
$12^{\mathrm{h}} 25^{\text {m }}$	$+13^{\circ} 3^{\prime}$
$12^{\mathrm{h}} 25^{\mathrm{m}}$	$+26^{\circ} 26^{\prime}$
$12^{\text {h }} 26^{\text {m }}$	$+15^{\circ} 5^{\prime}$
$12^{\mathrm{h}} 28^{\mathrm{m}}$	$+8^{\circ} 21^{\prime}$
$12^{\mathrm{h}} 29^{\mathrm{m}}$	$+19^{\circ} 2^{\prime}$
$12^{\mathrm{h}} 30^{\mathrm{m}}$	$+13^{\circ} 13^{\prime}$
$12^{\mathrm{h}} 30^{\mathrm{m}}$	$+28^{\circ} 37^{\prime}$
$12^{\mathrm{h}} 30^{\mathrm{m}}$	$+12^{\circ} 6^{\prime}$
$12^{\mathrm{h}} 30^{\mathrm{m}}$	$+26^{\circ} 39^{\prime}$

2961, Nebula in Yirgo. Comes into sight at the same moment as the nebula 2930, brilliant, round, with nucleus in the centre. Also discovered by Messier, 3^{\prime} to 4^{\prime} in diameter.

2972, Nebula in Coma Berenices, fairly brilliant and large, increasing in brightness towards the centre, at which there is a star.

3002, Nebula in Canes Yenatici, fairly brilliant and large, was resolved into stars by Herschel's great telescope.

17, Comae Berenices. A star of 5.5 mag., with a companion 6 mag., distance $145^{\prime \prime}$.

3021, Nebula in Yirgo. Discovered by Oriani in 1771, and described by Messier as a nebula, which can be seen but with difficulty in a 31 -foot telescope. On right and left is a star of 6 mag. An insignificant object in small instruments.

3041, 3042, Nebula in Canes Yenatici. A double nebula. The preceding one is faint, fairly small, and irregular in shape, the other which follows 3^{\prime} to the south is larger and more brilliant. In Herschel's telescope it was partly resolvable into stars.

ס Coryi 2.5 mag. with a companion 8 mag., distance $23^{\prime \prime}$, angle of position 214°.

3035, Nebula in Yirgo. Discovered by Messier, of moderate brilliancy, round and large, brightest in the centre.

3043, Nebula in Coma Berenices, faint, round, with nucleus.
3049, Nebula in Yirgo. Discovered by Messier in 1781, and described as a starless nebula, situated between two stars of 6 mag., which come into view at the same moment. It is elliptical, and the northern part is brighter than the southern. Lassell and Vogel have made maps of this nebula.

3075, Nebula in Yirgo, of moderate brilliancy, with a sudden increase of brightness towards the centre. Preceded by a star of 9 mag.

24, Comae Berenicies ($\Sigma 1657$), 5 mag. and yellow, with a blueish companion 6 mag. Distance (1863) $20^{\prime \prime}$, angle of position 271°.

3097, Nebula in Yirgo. Discovered as a very faint starless nebula by Messier ; it is round and brighter towards the centre. Vogel observed it with the Leipsic Refractor, and describes it as very brilliant 2^{\prime} in extent, suddenly denser at the centre, with a brilliant nucleus.

3101, Nebula in Coma Berenices. Fairly bright and large, gradually more brilliant towards the centre. Three stars follow it.

3105, Nebula in Yirgo, a faint, double nebula, coming into view at the same moment as two others still fainter. Tempel has made a map of the whole with the neighbouring stars.

3106, Nebula in Coma Berenices, a somewhat faint nebula, very large, $3-4^{\prime}$ in breadth, brighter towards the centre, with a nucleus like a star of 10 mag. Preceded by four faint stars.

$\begin{gathered} \hline \text { Right } \\ \text { Ascension } \\ 1890 . \end{gathered}$	${ }_{\substack{\text { Declination } \\ \text { 1sfo. }}}$	
$12^{\mathrm{h}} 31^{\mathrm{m}}$	$+60^{\circ} 9^{\prime}$	T Ursae Majoris, recognised as variable at Bunn in 1860. At maximum it is sometimes 7 , though often only 8 mag.; at minimum under 13. Period 256 days. The star is of a reddish-yelkow colour.
$12^{\mathrm{h}} 32^{\mathrm{m}}$	$+12^{\circ} 29^{\prime}$	3121, Nebula in Yirgo. Discovered by Messier in 1779, and described as a very faint nebula. John Herschel calls it brilliant, large, irregularly round, bright towards the centre, and probably capable of being resolved into stars.
$12^{\text {h }} 32^{\mathrm{m}}$	$+7^{\circ} 39{ }^{\prime}$	R Virginis, a reddish-yellow star, whose variability was recognised by Harding in 1809. At maximum it is 6.5 to 7.5 mag. ; at minimum 10 to 11 mag. Period 146 days.
$122^{\text {b }} 33^{\text {m }}$	$-26^{\circ} \quad 5^{\prime}$	3128, Nebula in Hydra. Diseovered by Messier in 1780, and deseribed by him as a very faint starless nebula not easy to distinguisb. Near it is a star of 6 mag. In 1786 the nebula was resolved into separate stars by F. W. Herschel's 20 -foot reflector, these being very densely collected towards the centre. The cluster is 4^{\prime} long by 3^{\prime} broad.
$12^{\mathrm{h}} 34^{\mathrm{m}}$	$-10^{\circ} 58^{\prime}$	3132, Nebula in Yirgo. An elongated, clliptical nebula, brighter at the centre. With a low magnifying power several stars come into view at the same time as the nebula.
$12^{\mathrm{h}} 35^{\text {m }}$	- $12^{\circ} 20^{\prime}$	Σ 1669, Virginis. A star of 6 mag., with a companion of nearly equal magnitude. Distance 5.8".
$12^{\mathrm{h}} 36^{\mathrm{m}}$	$-0^{\circ} 47^{\prime}$	γ Virginis ($\Sigma 1670$), a yellowish star 3 mag., with a somewhat fainter companion. This latter is at present easy to observe ($\mathrm{d}=5.2^{\prime \prime}, \mathrm{p}=336^{\circ}$, 1882): its period of revolution is 170 years. There is also another faint star (11.5 mag.), $d=103^{\prime \prime}, p=80^{\circ}$.
$12^{\text {h }} 36^{\mathrm{m}}$	$+33^{\circ} 12^{\prime}$	3165, Nebula in Canes Yenatici, a strip of nebula 12' Iong, but faint, with a small star in the centre.
$12^{\text {h }} 38^{\mathrm{m}}$	$+2^{\circ} 39^{\prime}$	3176, Nebula in Yirgo, somewhat faint, starless, brightest at the centre.
$12^{\mathrm{h}} 38^{\mathrm{m}}$	$+12^{\circ} 13^{\prime}$	3182, Nebula in Virgo. Discovered by Messier, who, however, did not see a faint nebula which precedes it. Somewhat faint. As seen with the Leipsic refractor, it seems capable of being resolved into stars.
$12^{\text {h }} 39^{\text {m }}$	$+61^{\circ} 45^{\prime}$	S Ursae Majoris, of a reddish-yellow, recognised as variable by Pogson in 1853. The changes of brilliancy are somewhat irregular. At maximum it is 8 , at minimum 10 , sometimes 11 mag. Period 225 days, is apparently, slowly increasing.
$12^{\text {h }} 39^{\text {m }}$	$+15^{\circ} \quad 2{ }^{\prime}$	Σ 1678, Comae Berenices, 6 mag., with a companion 7 mag., distance $32^{\prime \prime}$.
$12^{\mathrm{h}} 42^{\mathrm{m}}$	- $5^{\circ} 9^{\prime}$	3227, Nebula in Yirgo, fairly large, but not very brilliant, increasing in brilliancy towards the centre, with a kind of nucleus which Herschel thought resolvable into stars.
$12^{\text {h }} 45^{\text {ma }}$	- $9^{\circ} 41^{\prime}$	$\Sigma 1682$, Yirginis, 6.5 mag., yellowish, with a reddish companion 9 mag., $\mathrm{d}=32^{\prime \prime}, \mathrm{p}=307^{\circ}$.
$12^{\text {b }} 45^{\text {m }}$	$+41^{\circ} 47^{\prime}$	3258, Nebula in Canes Yenatici. Discovered by Méchain, and described by him as a starless nebula, of fair brilliancy, 2.5^{\prime} in diameter, with brilliant centre. Several stars come into view at the same moment as this nebula, one of them a double star which follows it.

Right Asconhion 18s0.	Declination 1880.	
$12^{\mathrm{h}} 45^{\mathrm{m}}+6^{\circ} 12^{\prime}$	U Yirginis, recognised as variable by Harding in 1831. The star	

3278, Nebula in Yirgo. Two faint nebulæ at 8^{\prime} to 10^{\prime} distance from one another. Discovered by W. Herschel on 15 March, 1784. The preceding nebula is long and thin and has an elongated nucleus.

35, Comae Berenices, ($\Sigma 1687$), 5 mag. and yellowish, with a blueish companion 8 mag., distance $1.3^{\prime \prime}$, and a second companion 9 mag., distance 28.5".

3293, 3294, Nebula in Virgo, double, faint, with other small, faint nebulæ in the vicinity. Tempel has made a map of this group of nebulæ.
Σ 1692, Canum Yenaticorum. The brightest star in the constellation and known by the name of "Cor Caroli." The star is a little over 3 mag., and has a companion 6 mag, at distance $20^{\prime \prime}$, in whose position no change has yet been observed.
Σ 1695, Ursae Majoris, 6.5 mag. with a companion 8 mag., $\mathrm{d}=3.2^{\prime \prime}$, $\mathrm{p}=287^{\circ}$.

3342, Nebula in Coma Berenices. A brilliant nebula of fair size with a core-like density at the centre. There is a small star in this nebula.

E Yirginis, a star of 4 mag., with a very faint companion (12 mag.), $\mathrm{d}=241^{\prime \prime} \mathrm{p}=120^{\circ}$.

42, Comae Berenices ($\Sigma 1728$). Two stars of 5 mag., but whose distance is so small that they may be considered one of the most difficult of double stars. Struve, who discovered their duplex character in 1827, could generally only distinguish an elongated star, actual division being only occasionally possible. Dembowski too, in 1863, saw only an elongated star; Burnham, however, in 1879, measured the distance as $0.67^{\prime \prime}$, angle of position 192°. Since 1882 the division has been easier than heretofore, but still requires an instrument of the first class.

15, 17, Canum Yenaticorum, two stars of nearly equal brilliancy, 5.5 mag. The distance is $4^{\prime} 30^{\prime \prime}$, still they cannot be divided without a telescope.
θ Yirginis, triple, 4.5, 9 and 10 mag. The nearer companion is $\mathrm{d}=$ $7.1^{\prime \prime}, p=344^{\circ}$, the farther and fainter, $d=71^{\prime \prime}, p=297^{\circ}$.

3437, Nebula in Canes Yenatici, a fairly brilliant nebula, 6^{\prime} long by 1.5^{\prime} broad, discovered by Herschel 1 May, 1785. Increases abruptly in brilliancy towards the centre, where it has what looks like a nucleus.

3453, Star Cluster in Coma Berenices. Discovered by Messier in 1777, and described as a starless nebula. In reality it is a star cluster in which, according to Rosse, 4 or 5 condensations are visible. A very beautiful object.

$\begin{gathered} \text { light } \\ \text { Ascension } \\ 1880 . \end{gathered}$	Declination 1880	
$13^{\mathrm{h}} 10^{\mathrm{m}}$	$+42^{\circ} 40^{\prime}$	3474, Nebula in Canes Yenatici. Discovered by Méchain in 1779, and described as a faint and starless uebula. According to Herschel, it is 10^{\prime} long by 4^{\prime}, with a bright nucleus. Huggins finds that it gives a continuous spectrunn which proves it to be a star cluster at an immeasurable distance.
$13^{\mathrm{h}} 19^{\mathrm{m}}$	$+55^{\circ} 33^{\prime}$	ζ Ursae Majoris, 2 mag., and greenish-white, with a companion 4.5 mag., distance $14^{\prime \prime}$. One of the most beautiful double stars in the heavens. At $11^{\prime} 47^{\prime \prime}$ distance from ζ is g or Alkor, and, in addition, a star 8 mag., distance 8.5 ', together with several fainter ones.
$13^{\mathrm{h}} 20^{\mathrm{m}}$	$-2^{\circ} 45^{\prime}$	W Yirginis, recognised as variable by Schocnfeld in 1866. At maximum it is 9 mag., and at minimum 10 to 10.4 mag. Period 17.3 days. The change of brilliancy is very uniform.
$13^{\text {b }} 23^{\mathrm{m}}$	$-22^{\circ} 40^{\prime}$	R Hydrae, a deep red star, recognised as variable by Maraldi in 1704. At maximum it is 4 to 5.5 mag., at minimum 10 mag. Period 437 days, formerly it seems to have been longer.
$13^{\text {h }} 25^{\text {m }}$	$+47^{\circ} 49^{\prime}$	3572, Nebula in Canes Yenatici. Discovered by Messier in 1773, and described as a faint, starless nebula, but double, each portion being bright in the centre, and $4 \frac{1}{2}^{\prime}$ in diameter. W. Herschel describes it as a brilliant, circular nebula, surrounded by a faint, nebular halo and accompanied by a second ncbula. J. Herschel's deseription and drawing were also wrong. Rosse's telescope showed the true structure of the nebula, i.e., a spiral mass which seems to be wound round a brilliant centre (Vide Plate xvi). These spiral coils have also been clearly distinguished and mapped out by Vogel, with the help of the Leipsic 8 -inch refractor. It would thus seem that we have here a mass of a really nebulous character coiling in vast eonvolutions round an enormous centre, yet spectrum analysis contradicts this theory. The nebula has a continuous spectrum similar to that of the stars, and without any bright lines, which are never absent from the spectra of true incandescent nebulae.
$13^{\mathrm{h}} 27^{\mathrm{m}}$	- $6^{\circ} 35^{\prime}$	S Yirginis, recognised as variable by Hind in 1852; the change of brilliancy is somewhat irregular. At maximum the star is 6 mag., sometimes only 8 mag., at minimum under 12 mag. Period 374 days.
$13^{\text {h }} 32^{\mathrm{m}}$	$-17^{\circ} 16^{\prime}$	3614, Nebula in Yirgo, faint; according to Lassell, a spiral with two arms.
$13^{\text {h }} 32^{\text {m }}$	$+36^{\circ} 55^{\prime}$	25, Canum Yenaticorum ($\mathcal{\Sigma} 1768$). A star of 5 mag., with a companion 7.5 mag., distance (when discovered by Struve in 1829), $1.05^{\prime \prime}$. It has decreased since then, and Engelmann, in 1883, calculated it as $0.8^{\prime \prime}$. The companion's angle of position was 151°. Apparently the distance is now increasing again.
$13^{\text {b }} 32^{\text {m }}$	$+9^{\circ} 30^{\prime}$	3615, Nebula in Yirgo, brilliant, 9^{\prime} to 10^{\prime} in length, with two nebulous nodes in the centre. There is one star to the south of it, and several fainter ones to the north. Tempel discovered some very faint nebule in its vicinity.

$\begin{gathered} \text { Reght } \\ \text { Senchion } \\ \text { Renson } \end{gathered}$	Declination 1850	
$13^{\text {h }} 35^{\text {m }}$	$+20^{\circ} 34^{\prime}$	1, Bootis, ($\Sigma 1772$), a star of 6 mag., with a faint companion 9 mag., distance $4.8^{\prime \prime}$.
$13^{\text {h }} 37^{\mathrm{m}}$	$+4^{\circ} 9^{\prime}$	84, Yirginis ($\mathbf{\Sigma} 1777$), 6 mag., with a companion 8 mag., distance 3.5 ${ }^{\prime \prime}$
$73^{\text {h }} 37 \mathrm{~m}$	$+28^{\circ} 59^{\prime}$	3636, Star Cluster in Canes Yenatici, discovered by Messier and described as a brilliant nebula. Herschel first resolved it, in 1783, into a star cluster containing upwards of 1,000 stars. A splendid object!
$13^{\mathrm{h}} 37^{\mathrm{m}}$	$+36^{\circ} 16^{\prime}$	3637, Nebula in Bootes, of moderate brilliancy, fairly large, circular, brighter in the centre.
$13^{\mathrm{h}} 42^{\mathrm{m}}$	$+18^{\circ} 3^{\prime}$	τ Bootis, a star of 4.5 mag., with a very faint companion, $d=8.5^{\prime \prime}$, $\mathrm{p}=352^{\circ}$.
$13^{\mathrm{h}} 43^{\mathrm{m}}$	$+49^{\circ} 55^{\prime}$	μ Ursae Majoris, 3 mag. According to Gemmil, who is supported by Espin, this star is variable. Period $4 \frac{3}{9}$ days. More exact information is not forthcoming.
$13^{\text {b }} 56^{\text {m }}$	$+2^{\circ} 7^{\prime}$	τ Yirginis, a star of 4 mag., with a faint companion 8.5 mag., $d=79^{\prime \prime}$, $\mathrm{p}=290^{\circ}$.
$14^{\mathrm{h}} 8^{\mathrm{m}}$	$+19^{\circ} 38^{\prime}$	T Bootis, a star of 9.5 mag., seen by Baxendall 9th April, 1860, on 11th April it was 10 mag., and on 20th 13 mag., on the 23 rd it became invisible, and has not since been seen.
$14^{\text {h }} 9^{\text {m }}$	$+52^{\circ} 22^{\prime}$	x Bootis ($\Sigma 1821$), a star of 4 mag., of a greenish-white colour with a blueish companion at $12.7^{\prime \prime}$ distance.
$14^{\text {h }} 10^{\mathrm{m}}$	$+19^{\circ} 49^{\prime}$	α Bootis (Arcturus), a brilliant star 1 mag., with a beautiful spectrum (Vogel, class IIa.). Its colour is a bright reddish-yellow. At distance $43^{\prime \prime}$ is a star of 9 mag. [See Note p. 71.]
$14^{\mathrm{h}} 12^{\mathrm{m}}$	$+51^{\circ} 55^{\prime}$	Bootis. This star 4.5 mag. has a companion 7.5 mag., at distance $38^{\prime \prime}$. Struve (1836) saw the primary as donble; Mädler, too, in 1842, believed he could do so; since then no similar observation has been made, and its duplex nature is, therefore, doubtful.
$14^{\mathrm{h}} 19^{\mathrm{m}}$	$+54^{\circ} 21^{\prime}$	S Bootis. A variable star of a reddish colour, discovered at Bonn in 1860. At maximum it is 8 mag., at minimum it becomes invisible. Period 272 days.
$14^{\mathrm{h}} 22^{\mathrm{m}}$	$-1^{\circ} 41^{\prime}$	φ Virginis (Σ 1846), 5 mag., with a companion 10 mag., $\mathrm{d}=4^{\prime \prime}$, $\mathrm{p}=103.5^{\circ}$.
$14^{\mathrm{h}} 23^{\mathrm{m}}$	- $5^{\circ} 26^{\prime}$	3900, Nebula in Yirgo, of moderate brilliancy, small, condensed at the centre, thought by J. Herschel capable of being resolved.
$14^{\mathrm{h}} 23^{\mathrm{m}}$	$+28^{\circ} 49^{\prime}$	$\Sigma 1850$, Bootis, 6.5 mag., with a companion 7 mag., $\mathrm{d}=25^{\prime \prime}, \mathrm{p}=$ 263°.
$14^{\mathrm{h}} 32^{\mathrm{m}}$	$+27^{\circ} 16^{\prime}$	R Bootis, a variable star, at maximum it is 6 mag., and reddish in colour, at minimum it sinks to 12 mag. Period 223 days. Recognised as variable at Bonn in 1858.
$14^{\mathrm{n}} 34^{\mathrm{m}}$	$+0^{\circ} 14^{\prime}$	3964, Nebula in Yirgo, discovered by W. Herschel 11 April, 1787, and classed by him among the brilliant nebula. J. Herschel considered it capable of being resolved into stars.
$14^{\text {b }} 35^{\text {m }}$	$+16^{\circ} 56^{\prime}$	π Bootis ($\Sigma 1864$), a star 4 mag., with an easily distinguished companion 6 mag., distance 6.6"

$\begin{gathered} \text { Right } \\ \text { Aschsion } \\ \text { isfo. } \end{gathered}$	Declination 1880
$>14^{\text {h }} 35^{\text {m }}$	$+14^{\circ} 15^{\prime}$
$>14^{\text {b }} 40^{m}$	$+27^{\circ} 35^{\prime}$
$14^{\mathrm{h}} 44^{\mathrm{m}}$	$-15^{\circ} 33^{\prime}$
$>14^{\mathrm{b}} 46^{\mathrm{m}}$	$+19^{\circ} 36^{\prime}$
$14^{\mathrm{h}} 46^{\text {m }}$	$+49^{\circ} 12^{\prime}$
$14^{\text {b }} 50^{\text {m }}$	$-20^{\circ} 52^{\prime}$
$14^{\text {b }} 55^{\text {m }}$	$-8^{\circ} 2^{\prime}$
$14^{\text {b }} 56^{\text {m }}$	$+54^{\circ} 23^{\prime}$
$15^{\text {h }} \quad 0^{\mathrm{m}}$	$+48^{\circ} 8^{\prime}$
$15^{\mathrm{h}} 5^{\mathrm{m}}$	$-19^{\circ} 20^{\prime}$
$15^{\mathrm{h}} 7^{\mathrm{m}}$	$+19^{\circ} 44^{\prime}$
$>15^{\mathrm{h}} 10^{\mathrm{m}}$	$+38^{\circ} 43^{\prime}$
$15^{\mathrm{h}} 11^{\mathrm{m}}$	$+33^{\circ} 46^{\prime}$

ζ Bootis ($\Sigma 1865$). The primary, 35 mag., has two companions, the nearer 4 mag., is at present so close to the primary that only instruments of the first class can distinguish it. According to Perrotin, the distance in 1883 was $0.6^{\prime \prime}$, the angle of position 297°. The farther companion is at distance $90^{\prime \prime}$, angle of position 27°.
ε Bootis ($\Sigma 1877$), one of the most beautiful of the double stars. The primary is 2.5 mag., and yellow, the companion 6 mag., and blue. Distance $2.9^{\prime \prime}$. The colours are very decided, and their contrast has a pretty effect.
α Librae, 2.5 mag., with a companion 5 mag., distance $230^{\prime \prime}$.
ξ Bootis ($\sum 1888$), 4.5 mag., and yellowish, with a red companion 6.5 mag. The distancè of this latter is rapidly decreasing. In 1882 it was 3.9", while in 1829 it was, according to Struve, $7.2^{\prime \prime}$. The angle of position is also rapidly changing. The period of revolution seems to be 130 years.

39, Bootis ($\Sigma 1890$), a double star 6 and 6.5 mag., distance $3.6^{\prime \prime}$. The primary is white, the companion reddish.

Anonyma in Libra, a remarkable multiple star. The primary is 6 mag., one companion (B), 7.5 mag. The rest are all very faint. Burnham (1878), gives the following measurements :

$$
\begin{array}{ll}
\text { A B d }=15.1^{\prime \prime} p=290^{\circ} & \text { A Ed }=69.4^{\prime \prime} p=52.5^{\circ} . \\
\text { A C } d=1206^{\prime \prime} p=322^{\circ} & \\
\text { AD } d=52.5^{\prime \prime} p=171.0^{\circ} & \text { A Fd }=105.5^{\prime \prime} p=166.5^{\circ} .
\end{array}
$$

The primary and the more brilliant companion compose a system with very decided proper motion. The other stars do not really, but only appear to, belong to it.
δ Librae, variable and belongs to the Algol type. Schmidt recognised its variability in 1859. Period 2 days $7^{\mathrm{h}} 21.3^{\mathrm{m}}$. The changes of brilliancy only occupy 12 hours. At maximum the star is 5 , at minimum 6 mag.

4029, Nebula in Draco, irregular, faint but large. Discovered by W. Herschel, 5 May, 1788.

44, Bootis ($\Sigma 1909$), a yellowish star 5 mag., with a blueish companion 6 mag., distance $5^{\prime \prime}$. Both primary and companion seem to be variable to a slight degree.
${ }^{6}$ Librae, a star 4.5 mag., with a companion 9 mag., $d=57^{\prime \prime}, p=110^{\circ}$. Burnham found the companion itself to be double, consisting of two stars of 10 mag., distance $1.9^{\prime \prime}$.
$\Sigma 1919$, Bootis, 6.5 mag., and somewhat yellowish, with a white companion 7 mag., distance $25^{\prime \prime}$.
Σ 1926, Bootis, 6.5 mag., with a faint companion 9 mag., $d=1.4^{\prime \prime}$, $\mathrm{p}=259^{\circ}$. A difficult double star.
© Bootis, 3 mag., and white. At distance $105^{\prime \prime}$, is a companion 7.5 mag., whose position has not changed for 50 years.
$15^{\mathrm{h}} 20^{\mathrm{m}}+37^{\circ} 48^{\prime}$
$15^{\mathrm{h}} 29^{\mathrm{m}}+10^{\circ} \quad 57^{\prime}$
$15^{\mathrm{h}} 32^{\mathrm{m}}-8^{\circ} 24^{\prime}$
4083, Star Cluster in Serpens. Observed by Messier in 1764, and described as a beautiful, circular nebula 3^{\prime} in diameter. Messier says, "In clear weather it can be seen very well with an ordinary telescope of 1 ' focus." Kirch, in 1702, was the first to discover this nebula. Messier could find in it no trace of stars. Nevertheless, an average telescope shows that it is a cluster of stars and no nebula. Herschel, with his 40 -foot reflector, could distinguish over 200 stars, though towards the centre they were so densely placed that it was impossible to resolve them. Rosse says the cluster is 7^{\prime} to 8^{\prime} in diameter, the stars ranging from 12 to 15 mag.
5, Serpentis (Σ 1930). 5 mag., with a faint companion 10 mag., $\mathrm{d}=10.6^{\prime \prime}, \mathrm{p}=40.8^{\circ}$, the position of which does not seem to alter. Struve, in 1836, believed the primary to be itself double, but this view has not been since corroborated.
Σ 1931, Serpentis. 6.5 mag., with a companion 7.5 mag., $\mathrm{d}=13.5^{\prime \prime}$, $\mathrm{p}=173^{\circ}$. No change of position has been noticed in last 50 years.
Σ 1932, Coronae. The primary is 5.5 mag., and has a companion 6 mag.; both white. Distance, according to Engelmann, 1883, 1.2", angle of position 308°.
U Coronae. A variable star of the Algol type, recognised by Winnecke in 1863 . At maximum 7.6 mag., at minimum 8.8 mag. Period 3 days $10^{\mathrm{h}} 51.2^{\mathrm{m}}$. The decrease in brilliancy occupies 4.5^{h}, the increase 5.2^{h}. The brilliancy at maximum varies somewhat.
S Librae, variable, slightly reddish in colour, at maximum only 8 mag.; at minimum under 12 mag. The changes of brilliancy are very irregular. Discovered by Borrelly in 1872.
S Serpentis. A reddish star, noted by Lalande in 1794 as of 8 mag., but which could no longer be found by Harding in 1807. Its variability was not recognised till 1828. At maximum it is $7-8$ mag., at minimum under 12 mag. Period 361 days.
S Coronae, of a reddish-yellow, recognised as variable by Hencke in 1860. Maximum 8, minimum 12 mag. Period 361 days.
n Coronae ($\Sigma 1937$). A yellow star of 5.2 mag., with a golden coloured companion 5.7 mag; it is extremely close to the primary, the distance (Engelmann, 1884) being only $0.6^{\prime \prime}$.
μ Bootis. A yellow-greenish star 4 mag., with a companion (μ^{2}) 7 mag., distance $108^{\prime \prime}$, angle of position 172° This latter is itself double, but, at present, can be divided only with a most powerful telescope.
δ Serpentis (Σ 1954), yellowish, 3.5 mag., with a companion 4 mag., $\mathrm{d}=3.5^{\prime \prime}, \mathrm{p}=190^{\circ}$.
Σ 1962, Librae, two stars 6 mag., distance $12^{\prime \prime}$.

$\begin{gathered} \text { Right } \\ \text { Ascossion } \\ 18800 \end{gathered}$	Declination ${ }_{\text {1880. }}$	
$15^{\mathrm{h}} 34^{\mathrm{m}}$	$+36^{\circ} 38^{\prime}$	Σ 1964, Coronae. A star of 7 mag., with a companion 7.5 mag., distance $15.5^{\prime \prime}$. Burnham found that this companion was itself double, distance 1.3".
$15^{\text {h }} 35^{\mathrm{m}}$	+ $37^{\circ} 2^{\prime}$	oronae ($\Sigma 1965$), 4 mag., with a companion 5 mag.
$15^{\mathrm{h}} 36^{\mathrm{m}}$	$+80^{\circ} 50^{\prime}$	π^{1} Ursae Minoris ($\Sigma 1972$), 6 mag., yellowish, with a yellowish companion 7 mag., $\mathrm{d}=30^{\prime \prime}, \mathrm{p}=83^{\circ}$.
$15^{\text {b }} 37^{\text {m }}$	+ $26^{\circ} 41^{\prime}$	γ Coronae ($\Sigma 1967$). A greenish-white star 4 mag., with a reddish companion 7 mag., distance (when discovered by Struve in 1826), 0.7". In the following year it could no longer be divided, and it was not seen again until the end of the fiftieth year, and then only with great difficolty. Even Burnham, in 1880, found the primary star only, and apparently quite round. Engelmann, however, in 1883-84, occasionally saw it as clearly elongated.
$15^{\mathrm{h}} 38^{\mathrm{m}}$	$+6^{\circ} 48^{\prime}$	a Serpentis, a star of 2.5 mag., with a beautiful spectrum (Vogel, Class IIa). There is a star of 12 mag., at distance $59^{\prime \prime}$, angle of position 353°.
$15^{\mathrm{h}} 41^{\text {m }}$	$+15^{\circ} 48^{\prime}$	β Serpentis ($\Sigma 1970$), 3.5 mag., and somewhat blueish. There is a companion of 9 mag., $\mathrm{d}=30.6^{\prime \prime}: \mathrm{p}=265^{\circ}$.
$15^{\text {h }} 44^{\text {m }}$	$+28^{\circ} 32^{\prime}$	R Coronae, a red star, recognised as variable by Pigott, in 1785. The changes of brilliancy are very irregular, and often imperceptible for years together. At maximum it is 5.8 mag., at minimum it is invisible even with a most powerful telescope.
$15^{\text {h }} 45^{\text {m }}$	$+15^{\circ} 30^{\prime}$	R Serpentis, yellowish-red, recognised as variable by Harding, in 1826. At maximum it is 5.6, at minimum less than 11 mag. The changes of brilliancy are irregular. Period nearly 358 days.
$15^{\text {b }} 48^{\mathrm{m}}$	$+53^{\circ} 16^{\prime}$	Σ 1984, Draconis, a star of 6.5 mag., with a companion 8.5 mag., $d=6.4^{\prime \prime}, p=276^{\circ}$.
$15^{\text {h }} 54^{\mathrm{m}}$	$+26^{\circ} 16^{\prime}$	T Coronae, a so-called new star, but which was catalogued at Bonn as a star of 9.5 mag., as far back as 1855 . On 12 May, 1866, it was visible to the naked eye, and soon reached the magnitude of x Coronae. On 13 May, its brilliancy already began again to decrease; on 20 May, it could only be seen with a telescope ; by the middle of June it was of 9 mag., and has so remained with but slight variations. At the time of its greatest brilliancy, it was rather yellowish, and was described by Baxendell as a yellowish star seen through a blue veil.
$>^{15^{\mathrm{h}} 58^{\mathrm{m}}}$	$-11^{\circ} 2^{\prime}$	ξ Scorpionis ($\Sigma 1998$). Triple. A star of 5 mag., with two companions 5.5 and 7.5 mag.. The nearer companion was in $1883, \mathrm{~d}=1.3^{\prime \prime}$, $\mathrm{p}=196^{\circ}$, and the distance seems to be increasing. The farther in 1883 was $\mathrm{d}=7.1^{\prime \prime}, \mathrm{p}=66^{\circ}$.
$75^{\text {b }} 58^{m}$	$-19^{\circ} 29^{\prime}$	β Scorpionis, 2 mag., with a companion 6 mag., at distance $13.6^{\prime \prime}$. Burnham, in 1879 , divided the primary into two stars of 2 and 10 mag., distance $.97^{\prime \prime}$. A 12 -inch refractor is necessary to distinguish this double star,

$\begin{gathered} \text { Right } \\ \text { Aun } \\ \text { 10500 } \end{gathered}$	${ }_{\text {Declination }}^{\text {18s0. }}$	
$16^{\text {h }} 1^{\text {m }}$	$+13^{\circ} 39^{\prime}$	£ 2007, Herculis, a double star, 6.5 mag. and 7.5 mag.; distance $32^{\prime \prime}$.
$16^{\text {h }} \beta^{\text {m }}$	$+17^{\circ} 22^{\prime}$	* Herculis ($\mathbf{\Sigma} 2010$), a yellowish star with a somewhat reddish companion, 6 mag., distance $30^{\prime \prime}$.
$16^{\text {h }} 5^{\text {m }}$	$-19^{\circ} 9^{\prime}$. Scorpionis, an easily observed double star, 4 and 7 mag., distance $40.5^{\prime \prime}$; thus observed by both Herschel and South. Mitchell, however, at Cincinnati in 1846, found that the companion is itself double, and consists of 2 stars of 6.5 mag. at distance $1.8^{\prime \prime}$. Lastly Burnham in 1874 divided the primary also into two stars, but the distance is only $0.8^{\prime \prime}$.
$16^{\mathrm{h}} 8^{\mathrm{m}}$	$+13^{\circ} 51^{\prime}$	49 Serpentis ($\Sigma 2021$). Primary 6.5 mag., companion ${ }^{\circ} 6.7$ mag., distance 3.7".
$16^{\mathrm{h}} 10^{\mathrm{m}}$	$+34^{\circ} 10^{\prime}$	${ }^{\sigma}$ Coronae (Σ 2032), 5 mag., yellowish with a blueish companion, 6 mag., distance $3.7^{\prime \prime}$. There is also a star 10 mag., $\mathrm{d}=54^{\prime \prime}, \mathrm{p}=88^{\circ}$, besides a faint star, $\mathrm{d}=4.9^{\prime}, \mathrm{p}=48.9^{\circ}$.
$>16^{\mathrm{h}} 10^{\mathrm{m}}$	$-22^{\circ} 41^{\prime}$	4173, Star Cluster in Scorpio, discovered by Messier in 1781, and described as a circular nebula, 2^{\prime} in diameter, with brilliant centre, like the nucleus of a comet. Later on Herschel, with the aid of his great telescope, found that the object was in reality a star cluster, the stars in which are exceedingly dense. On 21 May, 1860, Auwers saw a star of 6.5 mag . in the cluster which had not been visible there before, and this observation was confirmed a few days later by Pogson. The star was already decreasing, and by the middle of June, 1860, was no longer visible. Near it are two variable stars R and \mathcal{S}. The former, discovered by Chacornac in 1853, is faint at maximum, being only 9 mag., and at minimum is almost under 13 mag. The change of brilliancy occupies 223 days. The latter (S) varies between 9 and 13 mag. Period only 177 days. Neither star is of any particular colour.
$16^{\mathrm{h}} 12^{\mathrm{m}}$	$+29^{\circ} 29^{\prime}$	${ }_{v}$ Coronae. A star of 5.5 mag., with a companion of 9 mag., and three other very faint companions. Burnham gives (1879) the following measurements :

$\begin{gathered} \text { Right } \\ \begin{array}{c} \text { Recossaion } \\ 1580 . \end{array} \end{gathered}$	Declination ${ }_{\text {cissom }}$	
$16^{\text {h }} 37^{\mathrm{m}}$	$+36^{\circ} 41^{\prime}$	4230, Star Cluster in Hercules. A magnificent cluster visible on a clear night, with the naked eye, as a light cloud, as remarked by Halley, who discovered it in 1714. Messier observed this object in 1764, and says, that it can be seen with a 1 -foot telescope as a starless nebula, brilliant, circular, brighter at the centre. Its diameter is estimated by Messier to be 6^{\prime}, and the same astronomer remarks that the nebula is situated near two stars of 8 mag., of which one is above, the other beneath it. A 4 -inch refractor will resolve the nebula into stars, and Secchi, with his 9 -inch refractor, found the stars to be distributed over a space 8^{\prime} in diameter. Their number is probably 5,000 to 6,000 , and Rosse has noticed a remarkable spiral grouping among them. [The great $36-\mathrm{in}$. refractor of the Lick Observatory has thoroughly resolved the central glow of nebulosity into separate points. Ed.]
$16^{\text {h }} 39^{\text {m }}$	$+24^{\circ} \quad 1^{\prime}$	4234, Nebula in Hercules. A blueish, planetary nebula, circular, 8^{\prime} in diameter, and ill-defined at the edges. Its spectrum shows the nebula to be composed of incandescent gas, leing characterised by the three bright lines, of which the first is the most brilliant. Elsewhere the spectrum is dull and continuous. Webb describes the appearance of this nebula by saying that it looks like a star which has not been properly focussed in the telescope.
$16^{\mathrm{h}} 41^{\mathrm{m}}$	$-1^{\circ} 43^{\prime}$	4238, Star Cluster in Ophiuchus. Discovered by Messier in 1769, and described as a faint, circular, starless nebula, 3^{\prime} in diameter, near which there is a star of 9 mag. In 1783, Herschel's reflector resolved the nebula into stars showing a cluster of 7^{\prime} to 8^{\prime} in diamiter, at the centre of which the stars are very densely collected.
$16^{\mathrm{h}} 41^{\mathrm{m}}$	$+2^{\circ} 17^{\prime}$	19, Ophiuchi (Σ 2096), 6 mag., with a companion 9 mag., $d=22.2^{\prime \prime}$, $\mathrm{p}=93^{\circ}$.
$16^{\mathrm{h}} 41^{\mathrm{m}}$	$+35^{\circ} 52^{\prime}$	$\Sigma 2101$, Herculis, a star of 6 mag., with a companion 9 mag., $\mathrm{d}=4.2^{\prime \prime}$, $\mathrm{p}=57^{\circ}$.
$16^{\mathrm{h}} 44^{\mathrm{m}}$	$+47^{\circ} 44^{\prime}$	4244, Nebula in Hercules, a large, round but faint, planetary nebula, discovered by W. Herschel 12 May, 1787. It forms a triangle with two stars of 6 mag.
$16^{\mathrm{h}} 44^{\mathrm{m}}$	$+36^{\circ} 8^{\prime}$	$\Sigma 2104$, Herculis, a pretty, double star, 6.5 and 8.5 mag., distance 6 " .
$16^{\mathrm{h}} 46^{\mathrm{m}}$	$+15^{\circ} 9^{\prime}$	S Herculis, of a clear red colour and variable, discovered at Bonn in 1856. At maximum it is 6 mag., sometimes only 7 mag., at minimum it decreases to 11.5 and 12 mag. Period 303 days.
$16^{\text {h }} 51^{\text {m }}$	$-3^{\circ} 54^{\prime}$	4256, Star Cluster in Ophiuchus. Discovered by Messier, 29 May, 1764, and described as a faint, circular, starless nebula, which cannot be discerned without difficulty with a 3 -foot telescope. W. Herschel was the first to resolve this nebula into a densely crowded star cluster. These stars are partially visible in a 4 -inch refractor.
$16^{\text {h }} 53^{\text {m }}$	$-12^{\circ} 42^{\prime}$	Nova Ophiuchi, 1848. On 28 April of this year, Hind saw a star 4.5 mag., of a yellowish-red colour in this place where it had never before been visible. The star maintained this brilliancy till 10 May; it then began to decrease and is now under 12 mag.

	Declinstion ${ }_{\text {cosen }}$	
$17^{\mathrm{h}} 13^{\mathrm{m}}$	$+33^{\circ} 14^{\prime}$	$68 u$ Hercules, a variable star, varying from 4.5 to 5 mag., and red in colour. The period, according to Schmidt, who discovered it, is very irregular.
$17^{\mathrm{h}} 14^{\mathrm{m}}$	- $12^{\circ} 43^{\prime}$	v, Serpentis, 4 mag. There is a star of 8 mag., $\mathrm{d}=48^{\prime \prime}, \mathrm{p}=32^{\circ}$.
$17^{\mathrm{h}} 17^{\mathrm{m}}$	$-17^{\circ} 42^{\prime}$	4296, Nebula in Ophiuchus. A brilliant nebula, discovered by W. Herschel, 17 June, 1784. It is of considerable size, brighter towards the centre, and can be resolved into numerous very small stars with a powerful telescope.
$17^{\mathrm{h}} 20^{\text {m }}$	$+37^{\circ} 16^{\prime}$	\& Herculis ($\Sigma 2161$), a greenish-white star, 4 mag., with a companion (also somewhat green), 5.5 mag., distance $36^{\prime \prime}$.
$17^{\mathrm{h}} 22^{\mathrm{m}}$	$+11^{\circ} 29^{\prime}$	$\Sigma 2166$, Ophiuchi, 6 mag., with a companion 7.5 mag., distance 2.7 .
$17^{\mathrm{h}} 22^{\mathrm{m}}$	$-23^{\circ} 39^{\prime}$	4302, Nebula in Ophiuchus, annular, faint and small.
$17^{\mathrm{h}} 23^{\mathrm{m}}$	$-21^{\circ} 23^{\prime}$	Noya in Ophiuchus, 1604. At this point there appeared, in October 1604, a star of 1 mag., with a sparkling light second to Venus only in brilliancy. It remained till the spring of 1606 , continually decreasing, and then vanished entirely.
$17^{\mathrm{h}} 24^{\mathrm{m}}$	$-0^{\circ} 57^{\prime}$	乏 2173, Ophiuchi, a star of 5.7 mag., golden-yellow in colour, with a companion which is very close to its primary. The distance as estiinated by Schiaparelli, in 1882, is only $0.3^{\prime \prime}$.
$17^{\mathrm{h}} 29^{\mathrm{m}}$	$+9^{\circ} 40^{\prime}$	$53 f$, Ophiuchi, a star of 6 mag. , recognised as double by Herschel in 1781. The companion is 7.5 mag., and apparently does not change its position. Distance $41^{\prime \prime}$, angle of position 191°.
$17^{\text {h }} 29^{\text {m }}$	$+13^{\circ} 15^{\prime}$	54, Ophiuchi ($\Sigma 2184$), 6.5 mag., with a very faint companion, $d=21.4^{\prime \prime}, p=77^{\circ}$.
$17^{\mathrm{h}} 30^{\mathrm{m}}$	$+55^{\circ} 16^{\prime}$	- Draconis, two stars of 5 mag., visible to the naked eye as a star of 4 mag. Distance 62".
$17^{\text {b }} 31^{\text {m }}$	$-3^{\circ} 10^{\prime}$	4315, Star Cluster in Ophiuchus. A globular cluster, 7^{\prime} in diameter, easily seen as a circular nebula. Messier discovered it in 1764, and described it as a starless nebula, not large, faint, standing near a small star of 9 mag., easily seen with an ordinary $3 \frac{1}{-1}$-foot telescope. W. Herschel resolved the nebula into stars with his 20 -foot reflector. With a 4 -inch refractor, evidence of its resolvability is apparent. It is surrounded on three sides by several brilliant stars.
$17^{\text {b }} 31^{\text {m }}$	$+21^{\circ} \quad 4^{\prime}$	$\Sigma 2190$, Herculis, 6 mag., with a companion 8.5 mag., $\mathrm{d}=10^{\prime \prime}$, $\mathrm{p}=24^{\circ}$.
$17^{\text {h }} 35^{\text {m }}$	$+75^{\circ} 48^{\prime}$	4321, Nebula in Ursa Minor, 3^{\prime} in extent, brighter towards the centre. W. Herschel, who discovered it, took it to be a star cluster at an immeasurable distance.
$17^{\mathrm{h}} 36^{\mathrm{m}}$	$+24^{\circ} 34^{\prime}$	83, Herculis ($\Sigma 2194$), 6.5 mag., with a companion 8 mag., at distance $16.3^{\prime \prime}$. The distance seems to be slowly increasing.
$17^{\mathrm{h}} 39^{\mathrm{m}}$	$+2^{\circ} 37^{\prime}$	61, Ophiuchi ($\Sigma 2202$), a double star, 6 and 6.5 mag., $\mathrm{d}=20^{\prime \prime}$, $\mathrm{p}=93^{\circ}$. No change of position has been observed since Herschel's

$\overline{\substack{\text { Right } \\ \text { Asecssion } \\ \text { 1880 }}}$	Declination ${ }_{\text {iscos }}$	
$17^{\mathrm{h}} 40^{\mathrm{m}}$	$-27^{\circ} 47^{\prime}$	X Sagittarii, recognised as variable by J. Schmidt, in 1866. The star varies between 4 and 6 mag., within a period of 7 days.
$>17^{\mathrm{h}} 42^{\mathrm{m}}$	$+17^{\circ} 46^{\prime}$	$\Sigma 2215$, Herculis, 6.5 mag., with a companion 8 mag., distance only $0.7^{\prime \prime}$, angle 301°. (1878.)
$17^{\text {h }} 42^{\text {m }}$	$+27^{\circ} 48^{\prime}$	μ Herculis ($\Sigma 2220$), 3.5 mag. and yellowish, with a companion 9.5 mag., $d=31^{\prime \prime}, p=244^{\circ}$. In 1856 Clark discovered that the companion itself is double, consisting of 2 stars of 11 mag., which were then at distance $1.8^{\prime \prime}$. This distance has since steadily decreased, and is now only about $0.5^{\prime \prime}$. A very difficult object.
$17^{\mathrm{h}} 44^{\mathrm{m}}$	$+72^{\circ} 12^{\prime}$	ψ Draconis ($\Sigma 2241$), a star of 4.5 mag., with a companion 5 mag., distance $31^{\prime \prime}$. Recognised as double by Flamsteed.
$17^{\mathrm{h}} 47^{\mathrm{m}}$	$+23^{\circ} 6^{\prime}$	4343, Nebula in Hercules, small, round, rather brighter towards the centre, with a small nucleus.
$17^{\text {h }} 50{ }^{\text {m }}$	$-19^{\circ} 0^{\prime}$	4346, Star Cluster in Ophiuchus. A beautiful cluster discovered by Messier, 20 June, 1764. Its diameter is 15^{\prime}, and in this space there are nearly 80 stars of 9 to 12 mag. The stars seem to be scattered ever the whole field of vision, the lowest magnifying power must, therefore, be used.
$17^{\mathrm{h}} 54^{\mathrm{m}}$	$+51^{\circ} 30^{\prime}$	γ Draconis, 2.5 mag., with a very faint companion 11 mag., $\mathrm{d}=125^{\prime \prime}$, $p=116^{\circ}$. Burnham saw, besides, an exceedingly faint star, 13.5 mag., $\mathrm{d}=21^{\prime \prime}, \mathrm{p}=152^{\circ}$.
$17^{\mathrm{h}} 55^{\mathrm{m}}$	$+2^{\circ} 56^{\prime}$	67, Ophiuchi. This star 4 mag. has, at distance $55^{\prime \prime}$, a red companion 8 mag. The contrast of colour in these stars is pretty.
$17^{\text {h }} 55^{\mathrm{m}}$	$-23^{\circ} \quad 2^{\prime}$	4355, Nebula in Sagittarius. A group containing several nebulæ. Erroneously described by Messier as a star cluster. In 1784, Herschel saw 3 nebulæ, with a double star in their midst. J. Herschel found tbis star to be triple. Either the star or the nebulæ seems to rapidly change its position. 1120
$17^{\mathrm{h}} 56^{\mathrm{m}}$	$-30^{\circ} \quad 2^{\prime}$	4359, Star Cluster in Sagittarius, globular, fairly brilliant, condensed towards the centre. The stars are exceedingly small.
$17^{\text {h }} 57^{\mathrm{m}}$	$+21^{\circ} 35^{\prime}$	95, Herculis (Σ 2264), 5 mag., somewhat greenish, with a companion 5.5 mag., distance $6^{\prime \prime}$.
$17^{\mathrm{h}} 57^{\mathrm{m}}$	$-24^{\circ} 23^{\prime}$	4361, Star Cluster in Sagittarius, a very beautiful object discovered by Messier in 1764, and described by him as a star cluster. It really consists of several nebula, with a triple star and numerous others near to it.
$17^{\mathrm{h}} 57^{\mathrm{m}}$	- $8^{\circ} \cdot 10^{\prime}$	τ Ophiuchi ($\Sigma 2262$), 5 mag., with a blueish companion 9 mag., $\mathrm{d}=$ $100^{\prime \prime}, p=127^{\circ}$. The primary, as discovered by W. Herschel, is itself a double star. Schiaparelli in 1882 found $\mathrm{d}=1.9^{\prime \prime}, \mathrm{p}=252^{\circ}$. The period of revolution is nearly 200 years.
$17^{\mathrm{h}} 58^{\mathrm{m}}$	$-22^{\circ} 31^{\prime}$	4367, Star Cluster in Sagittarius, discovered by Messier in 1764, and a beautiful object. The stars are of 8 mag . and under. Messier says they are mingled with nebula.

4400, Star Cluster in Soutum Sobieski. A cluster of small stars discovered by Messier on 3 June, 1764 . It is 8^{\prime} in diameter, and in the Finder looks like a faint nebula.
4401, Star Cluster in Sagittarius. Discovered by Messier at the same time as the cluster just mentioned, and deseribed as less brilliant than it. Messier says that it looks like a nebula when seen with an ordinary $3 \frac{1}{3}$.foot teleseope, while with a powerful instrument stars only are visible. Diameter 5^{\prime}. Contains a double star 8.5 and 10.5 mag., distance $25^{\prime \prime}$.
4403, Nebula in Sagittarius. Something like a horse-shoe in shape. Diseovered by Messier 3 June, 1764. He deseribes it as a luminons, starless streak, 5^{\prime} to 6^{\prime} in length, spindle-shaped, not unlike the nebula in Andromeda, but very faint. There are two stars near it, parallel with the equator, but visible only in a teleseope. In clear weather a very good view of this nebula may be obtained with an ordinary $3 \frac{1}{8}$-foot tolescope. W. Herschel was the first to get a perfeet view of it. According to IIolden, one arm of this nebula has changed its position. The speetroscope shows the nebula to be a mass of incandescent gas.
4406, Star Cluster in Sagittarius. A densely erowded cluster of very minute stars. Seen by Messier, 27 July, 1764, and deseribed as a starless, cireular nebula, nut easy to distinguish with a $3 \frac{1}{2}$-foot telescope. Diameter 2' A powerful instrument is required to divide it.
21, Sagittarii. A star of 5 mag., which has, at distance $2^{\prime \prime}$, a faint companion 8 mag., diseovered by Alvan Clark.
59 d, Serpentis ($\Sigma 2316$), 6 mag., yellowish, with a companion 7.5 mag., $d=3.9^{\prime \prime}, p=314^{\circ}$.
4410, Star Cluster in Ophiuchus, large, coarsely seattered, discovered by Caroline Merschel in 1783.
39 b, Draconis ($\Sigma 2323$), 5 mag., with a companion 8 mag., $d=3.1^{\prime \prime}$, $\mathrm{p}=2.3^{\circ}$. Also another 7 mag., $\mathrm{d}=90^{\prime \prime}, \mathrm{p}=22^{\circ}$.
4415, Nebula in Draco. A remarkable nebula, fairly large and brilliant, preceded by two stars. According to Tuttle it is variable in brilliancy. D'Arrest in writing on this subject to J. Merschel, 8 May, 1863, says that on 24 Sept., 1802, Tuttle's nebula was so brilliant and remarkable in the Finder, (2 min . long and $80^{\prime \prime}$ broad) that he is convinced it has increased in brilliance since J. Herschel and his father observed it.
φ Draconis, 5 mag., with a companion 6.5 mag., distance only $0.6^{\prime \prime}$ The companion can only be seen by a powerful telescope.
U Sagittarii, a variable star, diseovered by J. Sehmidt in 1866 At maximum it is 7 mag., at minimum 8.5 mag . Period nearly 7 days.
MK 25, Star Cluster in Sagittarius. A cluster of small stars, discovered by Messier 20 June, 1764 . Can be seen with quite a small telescope. Burnham has measured several double stars in it.

$\begin{gathered} \text { Right } \\ \text { Ascension } \\ 1880 . \end{gathered}$	Declination
$18^{\text {h }} 29^{\text {m }}$	$-24^{\circ} \quad 0^{\prime}$
$18^{\text {h }} 30^{\text {m }}$	$-8^{\circ} 19^{\prime}$
$18^{\text {h }} 33^{m}$	$+38^{\circ} 40^{\prime}$
$18^{\text {h }} 35^{\text {m }}$	- $4^{\circ} 52^{\prime}$
$18^{\text {h }} 39^{\text {m }}$	$-9^{\circ} 31^{\prime}$
$18^{\mathrm{h}} 40^{\mathrm{m}}$	$-1^{\circ} 5$

4426, Star Cluster in Scutum Sobieski, large, fairly rich, and of moderate density. Discovered by W. Herschel, 16 June, 1784.
α Lyrae (Vega). This splendid star, 1 mag., has near it several faint stars, but their connection with it is merely optical. One of them, which was used by Struve and Briinnow as a comparison star for calculating the parallax of Vega, is of 9.5 mag, $\mathrm{d}=48^{\prime \prime}, \mathrm{p}=156^{\circ}$, another of 9 mag., $\mathrm{d}=150^{\prime \prime}, \mathrm{p}=40^{\circ}$. Winneeke and Burnham have also measured a very faint star (13 mag.), $\mathrm{d}=52^{\prime \prime}, \mathrm{p}=292^{\circ}$.

4429, Star Cluster in Scutum Sobieski, large and rich, but the stars are little more than minute luminous points.

4432, Star Cluster in Scutum Sobieski. Discovered by Messier, 2^{\prime} in diameter.

5, Aquilae ($\Sigma 2379$), 6 mag., with a blueish companion 7.4 mag., distance $13.2^{\prime \prime}$. There is also a second companion 11 mag., $\mathrm{d}=27.3^{\prime \prime}$, $\mathrm{p}=145^{\circ}$.
ε and 5 Lyrae. A very interesting pair of double stars, first observed by Flamsteed, though with keen sight and under specially favourable circumstances, ε and 5 Lyrae can be seen as clearly separated. The distance, according to Auwers, 1862, is $208^{\prime \prime}$. The fact that each of these stars is itself double was verified by Christian Mayer, and in 1823 John Herschel discovered three other very faint stars between ε and 5 Lyrae. The distance of the two components from s is, according to Dembowski, 1863, $3.045^{\prime \prime}$. The distance of both stars from 5 Lyrae was in the same year $2.48^{\prime \prime}$, and seems to be slowly decreasing.
ζ Lyrae, a star of 4 mag., with a companion 5.5 mag.; distance $44^{\prime \prime}$. Recognised by Flamsteed.
R Scuti Sobieski. Recognised as variable by Pigott in 1795. The change of brilliancy is very irregular; at maximum the star is sometimes 4.5 mag., though it is often under 5.5 mag., at minimum it is 6 , sometimes 8 mag. The period is irregular.

110, Herculis, 4 mag., with a companion 11 mag., $\mathrm{d}=61^{\prime \prime}, \mathrm{p}=92^{\circ}$. Burnham saw a still fainter companion, $\mathrm{d}=45^{\prime \prime}, \mathrm{p}=95^{\circ}$.
$\Sigma 2403$, Draconis, 6 mag., with a companion 9 mag. According to Struve, in 1832, d $=1.9^{\prime \prime}, \mathrm{p}=259^{\circ}$.

4437, Star Cluster in Scutum Sobieski. Discorered by Kirch in 1681, and described later by Messier as a cluster of small stars, only risible with a good instrument. The stars can be clearly seen with a $3 \frac{1}{2}$-inch refractor. Lamont and Helmert have taken the measurements of the whole cluster by Trigonometry.
β Lyrae, a variable star with three companions, a pretty spectacle when seen with the telescope. The primary is yellowish white, at maximum 3.5 mag., at minimum 4.5 mag. The period of the change of brilliancy is 12 days $21^{\mathrm{h}} 51^{\mathrm{m}}$, with a double maximum and minimum. The spectrum of this star occasionally contains bright lines. Of the companions, the most brilliant is 7.4 mag., $d=45.6, p=149^{\circ}$; a second, 8 mag., has $d=66^{\prime \prime}$, $p=318^{\circ}$; a third, 8.5 mag., $d=86^{\prime \prime} p=19^{\circ}$. Finally, Buruham has seen a fourth very faint star (11 mag.) $d=46^{\prime \prime}, p=248^{\circ}$.

4440, Star Cluster in Aquila, a beautiful object, consisting of stars 9 to 12 mag. Vogel has measured 62 of them with the micrometer.

4441, Nebula in Scutum Sobieski, brilliant, large and nearly circular, more condensed towards the centre. According to Herschel it is resolvable into stars.

4442, Nebula in Sagittarius, discovered by Messier in 1778, and described as a faint nebula with a brilliant centre. According to Hersehel it is a globular star cluster consisting of very minute stars.

4447, Nebula in Lyra, the beautiful and easily-observed Ring nebula. Discovered by Darquier, at Toulouse, 1779, between β and γ Lyrac. He describes it as very delicate, with well-defined boundaries, of about the same size as Jupiter, and looking like a planet that is about to become extinct. Messier describes it as a luminous cluster, apparently composed of small stars. It is, indeed, remarkable that this nebula, which appears like a disk, with a bright border, has a brilliancy wherein one fancies one can see twiukling star-points. Rosse and Bond maintain that they have succeeded in resolving it into separate stars, but its spectrum is one of bright lines which indicate that it is really composed of incandescent gas. A minute star of 10 mag. follows the nebula closely. [The $36-\mathrm{in}$. Refractor of the Lick Observatory shows three stars in the central space, where Lord Rosse's drawing gives a blank field. See Nature, August 9, 1888.-En.]
θ Serpentis, a yellowish white star 4 mag., with a somewhat faint companion at distarce $21^{\prime \prime}$.

Multiple Star in Lyra. The prinary, 6 mag., has a companion 6.5 mag., $d=45^{\prime \prime}, p=351^{\circ}$. Struve repeatedly observed this double star, but Burnham in 1879 was the first to discover that the primary is itself double, there being rear it a small star of 10 mag., $\mathrm{d}=1.7^{\prime \prime}, \mathrm{p}=126^{\circ}$.
R Lyrae, a variable star discovered by Baxendell in 1856, of a reddish colour. The change of brilliancy is but slight, the star varying between 4.3 and 4.6 within a period of 46 days.

$\begin{gathered} \text { Right } \\ \substack{\text { Asconsion } \\ 1880 .} \end{gathered}$		
$18^{\text {h }} 54^{\mathrm{m}}$	$+13^{\circ} 28^{\prime}$	11, Aquilae, 5 mag. and greenish white, with a faint companion 9.2 mag., distance $17.4^{\prime \prime}$, angle of position 252°. Discovered by W. Herschel, 25 June, 1781. An optical double star.
$18^{\text {h }} 59^{\text {m }}$	$-4^{\circ} 13^{\prime}$	h Aquilae, two stars 6 mag., distance $36^{\prime \prime}$, recognised as a double star by Bradley.
$19^{\text {b }} 1^{\mathrm{m}}$	$+8^{\circ} 3^{\prime}$	R Aquilae, a variable star of a deep red colour. At maximum it is sometimes 6.5 mag., at minimum 11 mag. Period 345 days.
$19^{\text {h }} 3^{\text {m }}$	$+32^{\circ} 19^{\prime}$	17 Lyrae, ($\Sigma 2461$), a yellowish star 6 mag., with a companion 10 mag. $\mathrm{d}=3.7^{\prime \prime}, \mathrm{p}=324^{\circ}$.
$19^{\text {h }} 3^{\text {m }}$	$+4^{\circ} 3^{\prime}$	4470, Star Cluster in Aquila, fairly large, rich, somewhat dense, diameter 12^{\prime} to 15^{\prime}. Discovered by W. Herschel, 30 July, 1785.
$19^{\text {h }} 10^{\mathrm{m}}$	$+38^{\circ} 57^{\prime}$	n Lyrae, ($\Sigma 2487$), a blueish star 4.5 mag., with a companion, $\mathrm{d}=28^{\prime \prime}$, $\mathrm{p}=84^{\circ}$.
$19^{\text {h }} 11^{\mathrm{m}}$	$1^{\circ} 8^{\prime}$	4482, Star Cluster in Aquila, consisting of stars from 9 to 12 mag., discovered by W. Herschel.
$19^{\mathrm{t}} 12^{\mathrm{m}}$	$+29^{\circ} 58^{\prime}$	4485, Star Cluster in Lyra. Discovered by Messier 23 January, 1779, as a starless nebula in Lyra. In 1784 Herschel resolved it into stars. It appears dull in a $3 \frac{1}{3}$-inch refractor; 4^{\prime} to 5^{\prime} in diameter.
$19^{\mathrm{h}} 12^{\mathrm{m}}$	$+37^{\circ} 55^{\prime}$	θ Lyrae, 4.5 mag., with a companion 8.5 mag., $\mathrm{d}=101^{\prime \prime}, \mathrm{p}=70^{\circ}$.
$19^{\text {h }} 12^{\text {m }}$	$+0^{\circ} 52^{\prime}$	23, Aquilae ($\Sigma 2492$), 6 mag., yellowish, with a faint companion 9.5 mag., $\mathrm{d}=3.4^{\prime \prime}, \mathrm{p}=11^{\circ}$.
$19^{\text {h }} 13^{\text {m }}$	$+6^{\circ} 20^{\prime}$	4487, Nebula in Aquila, fairly large, round, of moderate brilliancy. According to Rosse it is of spiral arrangement.
$19^{\mathrm{h}} 16^{\mathrm{m}}$	$+18^{\circ} 57^{\prime}$	£ 2504, पulpeculae, 6.5 mag., with a companion 8 mag., $\mathrm{d}=9^{\prime \prime}$.
$19^{\text {h }} 24^{\text {m }}$	$+24^{\circ} 25^{\prime}$	6 Yulpeculae, appearing to the naked eye like a star of 4 mag. In reality 2 stars of 4 and 5 mag., $d=403^{\prime \prime}$.
$-19^{\text {h }} 26^{\text {m }}$	$+27^{\circ} 42^{\prime}$	β Cygni, a reddish yellow star 3 mag., with a blue companion 5 mag., distance $34^{\prime \prime}$. The primary is variable, but the variations of brightness are not important; the colour also varies slightly.
$19^{\text {h }} 31^{\text {m }}$	$+16^{\circ} 12^{\prime}$	${ }^{\varepsilon}$ Sagittae, 6 mag., with a companion 7.5 mag., $\mathrm{d}=92^{\prime \prime}, \mathrm{p}=81^{\circ}$.
$19^{\text {h }} 34^{\text {m }}$	$+49^{\circ} 56^{\prime}$	R Cygni, of a deep red colour, at maximum 6 mag., at minimum very faint (3 mag.) Recognised as variable by Pogson in 1852. The period is, at least, 417 days. [Reported Aug. 13, 1888, to have a remarkably bright line (apparently F) in its spectrum, thus indicating a change in its constitution since Dunér's observations in 1879-80 and 1882.-Edir.]
$19^{\text {h }} 34^{\text {m }}$	$-16^{\circ} 34^{\prime}$	54 , Sagittarii, 6 mag., with a companion 7.5 mag., $\mathrm{d}=45^{\prime \prime}, \mathrm{p}=42^{\circ}$, and another very faint companion, discovered by Burnham, $d=36^{\prime \prime}$, $\mathrm{p}=245^{\circ}$.
$19^{\text {h }} 36^{\mathrm{m}}$	+ $26^{\circ} 32^{\prime}$	4508, Star Cluster in Yulpecula, very large, fairly rich in stars, not very dense. The stars range from 9.5 to 12 mag.
$19^{\mathrm{h}} 37^{\mathrm{m}}$	$+11^{\circ} 32^{\prime}$	χ Aquilae, 6 mag., with a comparion 7 mag., distance only $0.6^{\prime \prime}$.
$19^{\text {b }} 37^{\mathrm{m}}$	$-14^{\circ} 26^{\prime}$	4510, Nebula in Sagittarius, a planetary nebula, discovered by Herschel 8 Aug., 1787. He describes it as small, decidedly nebulous at the edges, and of uniform brightness, $10^{\prime \prime}$ to $15^{\prime \prime}$ in diameter. Several small stars are visible near to it. The spectrum contains 3 bright lines.

$\begin{gathered} \text { Right } \\ \text { Ascension } \\ 1880 . \end{gathered}$	Declination ${ }_{\text {18son }}$
$19^{\mathrm{h}} 37^{\mathrm{m}}$	$+39^{\circ} 55^{\prime}$
$19^{\mathrm{h}} 39^{\mathrm{m}}$	$+50^{\circ} 15^{\prime}$
$19^{\mathrm{h}} 41^{\mathrm{m}}$	$+44^{\circ} 50^{\prime}$
$19^{\mathrm{h}} 42^{\mathrm{m}}$	$+50^{\circ} 14^{\prime}$
$19^{\mathrm{h}} 42^{\mathrm{m}}$	$+33^{\circ} 27^{\prime}$
$19^{\text {h }} 43^{\text {m }}$	$+11^{\circ} 31^{\prime}$
$19^{\mathrm{h}} 43^{\mathrm{m}}$	$+27^{\circ} 1^{\prime}$
$19^{\mathrm{h}} 44^{\mathrm{m}}$	$+18^{\circ} 51^{\prime}$
$19^{\mathrm{h}} 45^{\mathrm{m}}$	$+8^{\circ} 33^{\prime}$
$19^{\mathrm{h}} 46^{\mathrm{m}}$	$+32^{\circ} 37^{\prime}$
$19^{\mathrm{h}} 46^{\mathrm{m}}$	$+0^{\circ} 42^{\prime}$
$19^{\mathrm{h}} 46^{\mathrm{m}}$	$+59^{\circ} \quad 7^{\prime}$
$19^{\mathrm{h}} 48^{\mathrm{m}}$	$+18^{\circ} 29^{\prime}$
$19^{\text {h }} 49^{\text {m }}$	$+69^{\circ} 58^{\prime}$

4511, Star Cluster in Cygnus. A large and rich cluster, diseovered by Harding in 1827. The stars are of 10 to 12 mag.

16, Cygni, 2 stars of 6 mag., distance $3 \pi^{\prime \prime}$.
δ Cygni ($\Sigma 2579$), a greenish star, 3 mag., with a companion 8 mag., first seen by W. Herschel, 1783. Later, the companion could no longer be distinguished, till Struve saw it again in 1826. According to Engelmann, the distance in 1883 was $1.8^{\prime \prime}$, angle of position, 321°.

4514, Nebula in Cygnus, discovered by W. Herschel, 6 Sept, 1773. In small telescopes it looks like a star out of focus. Secchi has made a drawing of this nebula.

17, Cygni ($\Sigma 2580$), a reddish star 5.6 mag., with a blueish companion 8 mag., distance $26^{\prime \prime}$.
π Aquilae ($\Sigma 2583$), 6 mag., with a companion 7 mag., distance which is at present gradually increasing, $1.6^{\prime \prime}$.

11, Yulpeculae. At this spot there appeared in 1670 a star of 3 mag., which disappeared in the autumn of the same year; in 1671 it reappeared as a star of 4 mag., but again vanished; was again seen in 1672, and is now completely invisible. In 1852 Hind discovered a small star of 10.5 mag., which in 1861 had diminished to 12 mag., and which be held to be identical with the star of 1670 . It seemed to him somewhat blurred as compared with other stars in its vicinity, and this impression was shared by Talmage and Baxendell.
ζ Sagittae ($\Sigma 2585$), a greenish-white star, 5.6 mag., with a companion 9 mag., $\mathrm{d}=8.7^{\prime \prime}, \mathrm{p}=312^{\circ}$. Clark, in 1875 , with a 12 -inch refractor, found the primary to be itself double. A very difficult object. Burnham's measurements are, $d=0.3^{\prime \prime}, p=158^{\circ}$.
a Aquilae, Altair. A brilliant star 1 mag., with a beautiful spectrum (Vogel ; Cless 1a). There is a companion 10 mag., $\mathrm{d}=152^{\prime \prime}, \mathrm{p}=322^{\circ}$. There are several fainter stars nearer to the primary. Burnham saw over a dozen with his great refractor.
χ Cygni, a variable star of long period, with irregular variations in brightness. Its variability was discovered by Kireh in 1686. At maximum the star reaches 4 mag., at minimum it diminishes to 13 mag . The period is about 400 days.
n Aquilae, recognised as variable by Pigott in 1784. At maximum it is 3.5 , at minimum 4.7 mag. The period of seven days $4^{\mathrm{h}} 14.2^{\mathrm{m}}$ is at present slowly increasing.

4517, Star Cluster in Draco, a fairly large but not very dense cluster, containing stars of 7 mag .

4520 , Star Cluster in Sagitta, described by Messier as a faint nebula. Herschel resolved it into a dense cluster of stars, 3^{\prime} in diameter. A beautiful object.

E Draconis ($\Sigma 2603$), 5 mag., with a companion 7.6 mag., distance $2.8^{\prime \prime}$.

$\begin{aligned} & \text { Sight } \\ & \text { Asingsion } \\ & \text { isco } \end{aligned}$	Declination 180.	
$19^{\text {h }} 49^{\mathrm{m}}$	$+6^{\circ} 7^{\prime}$	β Aquilae, a star of 4 mag., pale red in colour, with several faint stars near to it. Burnham gives the following measurements for two of them,(1880). $\begin{aligned} & \mathrm{AB} \mathrm{~d}=11.7^{\prime \prime} \mathrm{p}=15.7^{\circ} \\ & \mathrm{AC} \mathrm{~d}=151.7^{\prime \prime} \mathrm{p}=347.2^{\circ} \end{aligned}$

B, according to Engelmann, is 11.4 mag. C is more brilliant.
57 Aquilae ($\Sigma 2594$), 5 mag., with a companion 6 mag., distance $36^{\prime \prime}$. Struve calls both stars white, but at present one star seems to be yellowish, the other gives a greenish light.
ψ Cygni ($\Sigma 2605$), a white star of 5.6 mag., with a companion 7.5 mag., distance $3^{\prime \prime}$.

4532, Nebula in Yulpecula, Rosse's "Dumb-bell Nebula." First discovered in 1764 and described by Messier as an oval, starless nebula. A 4 -inch refractor shows two contiguous nebulm of moderate brilliancy, surrounded by some stars. The great telescopes of the two Herschels showed no more than this. The best drawing seems to be that of Secehi, who recognised the existence of a multitude of stars between the two nebulæ. According to Huggins these latter give a spectrum of bright lines, and are therefore really masses of incandescent gas.

13 , Sagittae, 6 mag., with a companion 7.5 mag., $\mathrm{d}=340^{\prime \prime}, \mathrm{p}=13^{\circ}$.
16, Yulpeculae, two stars of 6 mag., at distance of only $0.6^{\prime \prime}$ from one another. They can be resolved in none but the largest telescopes.

4543, Nebula in Sagittarius, discovered by Méchain in 1780 as a starless nebula. But even Messier recognised stars in it, and W. Herschel resolved the whole into a star cluster.

4544, Star Cluster in Cygnus, large, 15^{\prime} in diameter, very rich in stars of considerable brilliancy and very dense. Discovered by W. Herschel 11 Sept., 1789.
Σ 2628, Aquilae, yellowish, 6 mag., with a reddish companion 8.5 mag., $\mathrm{d}=4.2^{\prime \prime}, \mathrm{p}=346^{\circ}$. No motion has been observed in the companion since the time of Struve.
θ Sagittae, ($\Sigma 2637$), 6 mag., with a companion 8 mag., $d=11.2^{\prime \prime}$, $\mathrm{p}=327^{\circ}$, and a second companion 7.5 mag., $\mathrm{d}=76.5^{\prime \prime}, \mathrm{p}=225^{\circ}$.
$\Sigma 2644$, Aquilae, a double star 6 and 7 mag., $\mathrm{d}=3.6^{\prime \prime} \mathrm{p}=208^{\circ}$. The primary is of a blueish, white colour.

4559, Star Cluster in Yulpecula, a not very dense cluster of moderate brilliancy, fairly rich in stars, some of 6 to 13 mag. Schultz at Upsala has obtained accurate measurements of this cluster.
Σ 2654, Aquilae, a star of 6.5 mag., with a companion 8 mag., $\mathrm{d}=12^{\prime \prime}, \mathrm{p}=234^{\circ}$.
$32, \mathrm{o}^{2}$, Cygni, a star of 5 mag. with a companion 5 mag., $\mathrm{d}=338^{\prime \prime}$, $\mathrm{p}=323^{\circ}$, and a second companion 7 mag., $\mathrm{d}=107^{\prime \prime}, \mathrm{p}=173^{\circ}$.

$\begin{gathered} \text { Right } \\ \substack{\text { Ascension } \\ \text { B80. }} \end{gathered}$	Deelination 1880	
$20^{\text {h }} 11^{\text {m }}$	$-12^{\circ} 55^{\prime}$	α^{2}, a^{2} Capricorni, two stars 3 and 4 mag., both yellowish, distance $376^{\prime \prime}$. Each of them is itself double, α^{2} has a companion 10.5 mag., $d=7.4^{\prime \prime}$, $p=150^{\circ}$. This companion again was found to be also double by Clark in 1862 , and consists of two stars of 11 mag., distance only $1.2^{\prime \prime}$. They can be divided by the very largest telescopes only. There is a third star (9 mag.), $d=154^{\prime \prime}, p=156^{\circ}$. The star α^{1} has near it a star of 8.5 mag., $d=44.3^{\prime \prime}, p=221^{\circ}$. Burnham found also a small star of 14 mag., $d=40^{\prime \prime}$, $\mathrm{p}=182^{\circ}$, but this was only visible in the 26 -inch refractor at Washington.
$20^{\mathrm{h}} 13^{\text {m }}$	$+37^{\circ} 40^{\prime}$	P Cygni, a star of 5.6 mag., which suddenly increased in the year 1600 to 3 mag., disappeared in 1621 , but was again seen in 1655 by Cassini as a star of 3 mag.; it then again disappeared. Since 1677 it has beon 5.5 mag. without variation. It gives a yellowish light.
$20^{\text {h }} 13^{\text {m }}$	$-19^{\circ} 30^{\prime}$	σ Capricorni, a star of 6 mag., with a companion 9 mag., $d=54^{\prime \prime}$. Seen by Herschel.
$20^{\text {h }} 13^{\text {m }}$	$+77^{\circ} 21^{\prime}$	x Cephei, ($\Sigma 2675$), greenish white, 4 mag., with a companion, 8 mag., $\mathrm{d}=7.3^{\prime \prime}, \mathrm{p}=124^{\circ}$.
$20^{\text {h }} 14^{\mathrm{m}}$	$-15^{\circ} 10^{\prime}$	β Capricorni, 3 mag., and of a golden yellow, with a blucish companion 6 mag., distance $205^{\prime \prime}$. Botween the two stars somewhat to the north of a line joining them is a star of 11 mag., which as discovered by J. Herschel, is itself double, and consists of two stars of 11.5 mag., distance $3^{\prime \prime}$. In Herschel's opinion no telescopo can distinguish the moons of Uranus if it cannot make these two stars clearly visible. Only large and powerful instruments can do this.
$20^{\mathrm{h}} 17^{\mathrm{m}}$	$+19^{\circ} 43^{\prime}$	4572, Nebula in Sagitta, planetary, but described by J. Herschel as capable of being resolved into stars. Lamont speaks of it as a circular mass of nebula having a distinct nucleus in the centre, but without any trace of resolvability. The nucleus was not visible in Herschel's telescopo. The nebula is placed between a number of stars.
$20^{\mathrm{h}} 19^{\mathrm{m}}$	$+40^{\circ} 20^{\prime}$	4575, Star Cluster in Cygnus, a moderately rich but rather small cluster containing stars of 10 to 12 mag., besides several more brilliant.
$20^{\mathrm{h}} 20^{\mathrm{m}}$	$-18^{\circ} 36^{\prime}$	π Capricorni, a somewhat yellowish star of 5 mag., with a faint companion 10 mag., $\mathrm{d}=3^{\prime \prime}, \mathrm{p}=146^{\circ}$, discovered by Burnham.
$20^{\mathrm{h}} 22^{\mathrm{m}}$	$-18^{\circ} 12^{\prime}$	\oint Capricorni, 5 mag., with a companion 8 mag., $\mathrm{d}=3^{\prime \prime}, \mathrm{p}=173^{\circ}$. There is also a distant companion 7.5 mag., $\mathrm{d}=236^{\prime \prime}, \mathrm{p}=151^{\circ}$.
$20^{\text {h }} 23^{\mathrm{m}}$	$-18^{\circ} 59^{\prime}$	o Capricorni, 5.6 mag., with a companion 7 mag., distance 22". Recognised as a double star by Bradley.
$20^{\mathrm{h}} 27^{\mathrm{m}}$	$+25^{\circ} 24^{\prime}$	$\Sigma 2695$, Yulpeculae. The primary is 6 mag. and white, the companion 8 mag. The position of the latter, according to Engelmann's calculations, $1884, \mathrm{~d}=1.4^{\prime \prime}, \mathrm{p}=81.5^{\circ}$.

4586, Nebula in Delphin, faint, somewhat brighter towards the centre. A star of 9 mag. precedes it. W. Hersehel resolved the nebula into stars.

Right Anconsion 1880.	Declination 1850.
$20^{\mathrm{h}} 29^{\mathrm{m}}$	$+60^{\circ} \quad 16^{\prime}$
$20^{\mathrm{h}} 29^{\mathrm{m}}+27^{\circ}$	54^{\prime}

liant, fairly Star Cluster in Vulpecula, discovered by W. Herschel, brilliant, fairly large and rich, containing many brilliant stars densely massed together.
β Delphini ($\Sigma 2704$), a greenish star of 3.4 mag., with a faint companion 11 mag., $\mathrm{d}=35.5^{\prime \prime}, \mathrm{p}=335.6^{\circ}$. There is a second exceedingly faint companion, $\mathrm{d}=27.5^{\prime \prime}, \mathrm{p}=115^{\circ}$. Finally, Burnham found the primary to be itself double, consisting of two stars at a distance of only $0.26^{\prime \prime}$.

1, Aquarii, a star of 5 mag., with two very faint companions (11 mag.), whose positions Burnham calculated in 1879 as follows: $\mathrm{d}=55.8^{\prime \prime}, \mathrm{p}=$ $217.4^{\circ} ; \mathrm{d}=72.9^{\prime \prime}, \mathrm{p}=38.9^{\circ}$.
α Delphini, 4 mag., with a companion 9.5 mag., $d=35^{\prime \prime}, \mathrm{p}=278^{\circ}$. There are in addition threa exceedingly faint stars near the primary, $\mathrm{d}=20^{\prime \prime}$, $\mathrm{p}=225^{\circ} ; \mathrm{d}=45^{\prime \prime}, \mathrm{p}=350^{\circ} ; \mathrm{d}=81^{\prime \prime}, \mathrm{p}=114^{\prime \prime}$. Auwers in 1858 found from numerous comparisons that α fluctuates in brilliancy to the extent of about half a magnitude, within a period of about 14 days. Since the date named this change of brilliancy does not seem to have been again noticed.

49, Cygni ($\Sigma 2716$), 6 mag. and yellowish, with a blueish companion 8 mag., distance $2.7^{\prime \prime}$. In both stars the colours are easily recognisable.
T Delphini, variable, discovered by Baxendell in 1860. At maximum it does not exceed 8 and often scarcely 9 mag., at minimum it is 13 mag . Period 331 days.

4600, Nebula in Cygnus, a remarkable, irregular nebula, fairly bright and large. It extends beyond 52 Cygni. Discovered by Herschel 7 Sept., 1784 ; as seen by him it extended over more than 1°, indeed, with the highest magnifying power, almost 2°.
γ Delphini ($\Sigma 2727$), a star of 4 mag., golden yellow in colour, with a greenish-blue companion 5 mag., distance $11^{\prime \prime}$.

52, Cygni ($\Sigma 2726$), yellowish, 4 mag., with a companion 9 mag., distance $6.2^{\prime \prime}$.
T Cygni, recognised as variable by Schmidt in 1864, it is usually about 6 mag., and yellowish-white in colour. The changes of brilliancy are slight but unmistakeable.
λ Cygni, 5 mag., with a companion 10.5 mag., distance $85^{\prime \prime}$, angle of position 104°. Struve discovered that the primary is itself double, consisting of two stars of 5.5 mag., distance $0.6^{\prime \prime}$. A very difficult object.

T Aquarii, recognised as variable by Goldschmidt in 1861. At maximum it is often somewhat above 7 mag., but at minimum it diminishes to 13 mag. Period 203 days.

4, Aquarii ($\Sigma 2729$), a very difficult double star. The primary is 6 mag., and somewhat yellowish, the companion 8 mag. According to Burnham (1879), the distance is only $0.6^{\prime \prime}$, angle of position 167°.

γ Equulei, 5 mag., yellow, with a companion 6 mag., distance $366^{\prime \prime}$. The primary is itself double, having a small star 10 mag. at $d=2.1^{\prime \prime}$, $p=274.5^{\circ}$. Burnham also saw a very faint star, $d=41^{\prime \prime}, p=10^{\circ}$.
4645, Star Cluster in Cygnus, an extensive but not very rich cluster of stars of 10 mag. A star of 7 mag. follows it on its edge.
T Cephei, recognised as variable by Ceraski in 1879. At maximum the star is 5.5 , at minimum 9 mag. Period 390 days.
$\Sigma 2780$, Cephei. The primary is 6 , the companion 7 mag., and both are white. Wilson (1873) calculates, $\mathrm{d}=1.0^{\prime \prime}, \mathrm{p}=224.3^{\circ}$. No change of position has been observed since the time of Struve.
§ Equulei ($\Sigma 2777$), 5 mag. and yellowish, with a companion 10 mag. In 1852 Otto Struve found that the primary is itself double, having a companion 10.5 mag. near to it. Burnham (1880) calculates :

$$
\begin{aligned}
& \mathrm{AB} \mathrm{~d}=0.35^{\prime \prime}, \mathrm{p}=29^{\circ} . \\
& \mathrm{AC} \mathrm{~d}=22.7^{\prime \prime}, \mathrm{p}=37.9^{\circ} .
\end{aligned}
$$

The primary can only be divided with a most powerful instrument.
τ Cygni, 4 mag., a difficult double star, discovered by Clark in 1874. According to Burnham, the companion is at $\mathrm{d}=1^{\prime \prime}, \mathrm{p}=150^{\circ}$. Hall saw another very faint companion, $\mathrm{d}=16^{\prime \prime}, \mathrm{p}=260^{\circ}$.
${ }^{v}$ Cygni, a star of 4.5 mag., with two faint companions of 10 mag., $\mathrm{d}=15^{\prime \prime}, \mathrm{p}=219^{\circ}$, and $\mathrm{d}=21.5^{\prime \prime}, \mathrm{p}=178^{\circ}$.
$\Sigma 2790$, Cephei, 6 mag. and red, with a companion 10.5 mag., $\mathrm{d}=4.5^{\prime \prime}$, $\mathrm{p}=46.5^{\circ}$.

1 Pegasi, a yellow star 4.5 mag., with a companion 8.9 mag., $\mathrm{d}=37^{\prime \prime}$, $\mathrm{p}=301^{\circ}$.
β Equulei, 5 mag., with a companion 10.5 mag., $\mathrm{d}=67^{\prime \prime}, \mathrm{p}=309^{\circ}$, and, in addition, a second companion 11 mag., $\mathrm{d}=86^{\prime \prime}, \mathrm{p}=276^{\circ}$. The first companion is itself a double star of 10 and 11 mag., distance $6.5^{\prime \prime}$. Burnham also found a very faint star, $\mathrm{d}=32^{\prime \prime}, \mathrm{p}=260^{\circ}$. This latter is visible in a very powerful telescope only.

4670, Star Cluster in Pegasus, recognised as a nebula by Maraldi as far back as $\mathbf{1 7 4 5}$. Herschel resolved it into a globular cluster of stars. With a 5 -inch refractor it has this appearance, though the centre cannot be resolved. At the edges are scattered a large number of stars of from 11 to 12 mag. Diameter $3^{\prime}-4^{\prime}$

4678, Nebula in Aquarius. In the average telescope this appears to be of moderate brilliancy and circular, with a small faint star at the eastern edge. Discovered in 1746 by Maraldi, was resolved into stars by Herschel.
$21^{\mathrm{h}} 27^{\mathrm{m}}+70^{\circ} \quad 2^{\prime}$
β Cephei ($\Sigma 2806$), a greenish-white star of 3 mag., with a companion 8 mag., $\mathrm{d}=13.6^{\prime \prime}, \mathrm{p}=250^{\circ}$.

$\begin{gathered} \text { ARight } \\ \text { Asconsion } \\ \text { L880 } \end{gathered}$		
$21^{\text {b }} 28^{\text {m }}$	$+47^{\circ} 54^{\prime}$	4681, Star Cluster in Cygnus, a large and beautiful cluster, discovered by Messier in 1764, visible in a small telescope.
$21^{\mathrm{h}} 32^{\mathrm{m}}$	$+6^{\circ} 5^{\prime}$	3, Pegasi, a star of 6 mag., with a companion 7.5 mag., $d=39^{\prime \prime}$, $p=349^{\circ}$. No change of position has been noticed since it was first observed by W. Herschel.
$21^{\mathrm{h}} 34^{\mathrm{m}}$	- $23^{\circ} 43^{\prime}$	4687, Star Cluster in Capricornus, described by Messier as a strip of starless nebula visible only with difficulty. It can be resolved into stars with a 5 -inch refractor. Herschel saw the stars with a 10 -foot reflecting telescope.
$21^{\mathrm{h}} 35^{\mathrm{m}}$	$+56^{\circ} 54^{\prime}$	Σ 2816, Cephei. Triple, with a distant companion. The primary A is 6 mag., B 8, C 8, D 9. Wilson and Seabroke's calculations (1873) are as follows: A B $p=122.3^{\circ}, \mathrm{d}=11.7^{\prime \prime} ; \mathrm{AC} p=339.9^{\circ}, \mathrm{d}=19.8^{\prime \prime}$; A D $p=174.2^{\circ}, d=50^{\prime \prime}$.
$21^{\mathrm{h}} 37^{\mathrm{m}}$	$+78^{\circ} 5^{\prime}$	S Cephei, a red star recognised as variable by Hencke in 1855. At maximum it never exceeds 7.5 mag., and at minimum it diminishes to 12 mag. Period about 485 days.
$21^{\text {h }} 37^{\text {m }}$	$+42^{\circ} 18^{\prime}$	Nova Cygni, discovered 24 Nov., 1876, by Schmidt as a yellow star of 3 mag. It was at once apparent that a decrease of brilliancy was taking place, aud in Sept., 1877, the star was only 10.5 mag . ; in the following year it was only $13-14$ mag., and invisible except in the most powerful telescopes. The spectrum at the time of greatest brilliancy contained eight bright lines indicating the presence of hydrogen, natrium and magnesium. Finally these were reduced to a single bright line accompanied only by the traces of a continuous spectrum, and bearing a close resemblance to the spectrum of a planetary nebula. At the Dunecht Observatory a sketch was made, by means of a 15 -inch refractor, of the surroundings of Neva within a radius of 7.5^{\prime}.
$21^{\text {h }} 38^{\text {m }}$	$+9^{\circ} 20^{\prime}$	ε Pegasi. The primary is 2.3 , the companion 8 mag. This latter was first seeu by W. Herschel, 20 Nov., 1782. South (1825) gives the following measurements : $\mathrm{d}=138.5^{\prime \prime}, \mathrm{p}=323^{\circ}$. According to Schmidt and Seidel the primary scems to be variable in a slight degree.
$21^{\text {b }} 39^{\text {m }}$	$+28^{\circ} 12^{\prime}$	μ Cygni, ($\Sigma 2822$), a star of 4.5 mag., with a beautiful blue companion 5 mag., distance $3.8^{\prime \prime}$, besides a companion of 7 mag., $\mathrm{d}=208.7^{\prime \prime}, \mathrm{p}=57^{\circ}$. Burnham saw another star of 11.5 mag., $\mathrm{d}=35.5^{\prime \prime}, \mathrm{p}=264^{\circ}$.
$21^{\text {h }} 39^{\text {m }}$	$+25^{\circ} \quad 6^{\prime}$	x Pegasi, ($\Sigma 2824$), a star of 4 mag., with a very faint companion 11 mag., $\mathbf{d}=11^{\prime \prime}, \mathrm{p}=308^{\circ}$. Burnham discovered that the primary is itself double, but the companion is only at distance $0.27^{\prime \prime}$. The two stars differ about half a magnitude in brilliancy.
$21^{\text {h }} 40^{\text {m }}$	$+58^{\circ} 14^{\prime}$	μ Cephei, of a deep red colour, and varies between 4 and 5 mag. ; period not yet ascertained. The star has two companions, but they are both very faint.
$21^{\text {h }} 43^{\text {m }}$	$+65^{\circ} 12^{\prime}$	4709, Star Cluster in Cepheus, fairly large, rich in stars, densely massed together. In largo telescopes a very beautiful object.

	${ }^{\text {Decelination }}$ 1850.	
$21^{\mathrm{h}} 48^{\mathrm{m}}$	$+55^{\circ} 15^{\prime}$	$\Sigma 2840$, Cephei, a star of 6 mag., somewhat greenish in colour, with a companion 7 mag., $\mathrm{d}=20^{\prime \prime}, \mathrm{p}=195^{\circ}$.
$21^{\text {b }} 55^{\text {m }}$	+120 33^{\prime}	20, Pegasi, 6 mag. As discovered by Burnham, this star has an exceedingly faint companion of 13 mag., $\mathrm{d}=51^{\prime \prime}, \mathrm{p}=326 .^{\circ}$
$22^{\text {h }}{ }^{\text {m }}$	$+64^{\circ} 2^{\prime}$	ξ Cephei. Primary yellowish, 4.5 mag., companion blueish, 6.7 mag . Struve, in 1831, calculated as follows, $\mathrm{d}=5.6^{\prime \prime}, \mathrm{p}=289^{\circ}$.
$22^{\mathrm{h}} 1^{\text {m }}$	$+45^{\circ} 54^{\prime}$	4755, Star Cluster in Lacerta. Large, fairly rich. Some of the stars are from 8 to 10 mag.
$22^{\text {b }} 5^{m}$	$+58^{\circ} 42^{\prime}$	$\Sigma 2872$, Cephei. Primary 6 mag., companion 6.5 mag., $\mathrm{d}=21.7^{\prime \prime}$, $\mathrm{p}=316.4^{\circ}$. The companion is itself double, consisting of two stars of 7 mag., distance only $0.6^{\prime \prime}$.
$22^{\text {b }} 8^{\text {m }}$	$-21^{\circ} 40^{\prime}$	41, Aquarii, 5.6 mag., and yellowish, with a companion 8.9 mag., $\mathrm{d}=5.1^{\prime \prime}, \mathrm{p}=116^{\circ}$.
$22^{\text {h }} 8^{\text {m }}$	+69 32^{\prime}	Σ 2883, Cephei, 6 mag., with a blueish companion 8.2 mag., $\mathrm{d}=15^{\prime \prime}$, $\mathrm{p}=255^{\circ}$.
$22^{\mathrm{h}} 10^{\mathrm{m}}$	$+49^{\circ} 17^{\prime}$	4773, Star Cluster in Lacerta. Coarsely scattered, with a good many fairly brilliant stars; diameter 16^{\prime}. In it is to be seen the double star $\Sigma 2890$.
$22^{\mathrm{h}} 11^{\mathrm{m}}$	$+72^{\circ} 43^{\prime}$	Σ 2893, Cephei, yellowish, 6 mag. There is a star 8 mag., $\mathrm{d}=29^{\prime \prime}$, $\mathrm{p}=348 .{ }^{\circ}$
$22^{\text {h }} 18^{\text {m }}$	$+20^{\circ} 15^{\prime}$	33, Pegasi ($\Sigma 2900$). Triple. The primary (A) 6 ; the nearer companion (B) 9 ; the farther (C) 7.5 mag. Dembowski gives the following measurements, 1863 : $\begin{aligned} & \text { A B d }=2.3^{\prime \prime}, \mathrm{p}=178^{\circ} \\ & \text { A C d }=60.5^{\prime \prime}, \mathrm{p}=334^{\circ} \end{aligned}$
$22^{\mathrm{h}} 23^{\mathrm{m}}$	$-0^{\circ} 38^{\prime}$	ζ Aquarii ($\Sigma 2909$). Even Chr. Mayer knew this star to be double, and the fact is easily verified. The primary is 4 , the companion 4.1 mag., $\mathrm{d}=3.5^{\prime \prime}$, and both are a greenish-white colour. Since Herschel's time, the distance has decreased, the angle of position has also changed considerably.
$22^{\mathrm{h}} 24^{\mathrm{m}}$	$+3^{\circ} 49^{\prime}$	37, Pegasi ($\Sigma 2912$). A star of 6 mag., with a companion 7 mag. When discovered by Struve (in 1831) the distance was $1.2^{\prime \prime}$, but it has since considerably decreased, and Burnham, in 1880, found it impossible to divide the star.
$22^{\mathrm{h}} 25^{\mathrm{m}}$	$+57^{\circ} 48^{\prime}$	\& Cephei, yellowish-red in colour and variable; it is the primary of a double star system. At maximum it is nearly 4 mag., at minimum almost 5 mag. Period $5 \frac{1}{5}$ days, the changes of brilliancy succeed one another quite regularly.
$22^{\text {h }} 31^{\text {m }}$	$+39^{\circ} \quad 1^{\prime}$	8, Lacertae (Σ 2922), quadruple, $\mathrm{A}=6, \mathrm{~B}=6.5, \mathrm{C}=10, \mathrm{D}=$ 8.5 mag. Burnham's calculations are : $\begin{aligned} & \text { A B d }=22.3^{\prime \prime}, \mathrm{p}=186^{\circ} . \\ & \text { B C d }=27.9^{\prime \prime}, \mathrm{p}=155^{\circ} . \\ & \text { AD d }=81.5^{\prime \prime}, \mathrm{p}=144^{\circ} . \\ & \text { B D d }=66.5^{\prime \prime}, \mathrm{p}=13.1^{\circ} . \end{aligned}$

$\begin{aligned} & \text { Aient } \\ & \text { Aconsion } \\ & \text { 1880. } \end{aligned}$	Declination 1880.	
$22^{\text {h }} 31{ }^{\text {m }}$	$+33^{\circ} 43^{\prime}$	4815, Nebula in Pegasus, fairly bright and large, with a sudden increase of brilliancy towards the centre.
$22^{\text {b }} 37^{\text {m }}$	$+29^{\circ} 36^{\prime}$	n Pegasi, 3 mag., with a companion 10.5 mag., observed by Herschel and South, $d=90^{\prime \prime}, p=339^{\circ}$.
$22^{\text {h }} 41^{\text {m }}$	$-14^{\circ} 41^{\prime}$	69, Aquarii ($\Sigma 2943$), a star of 6 mag., with a companion 9 mag., $d=28^{\prime \prime}, p=115^{\circ}$.
$22^{\text {h }} 41^{\text {m }}$	$+11^{\circ} 34^{\prime}$	ξ Pegasi, 5 mag., with a companion 10.5 mag. (observed by J. Herschel) $d=12^{\prime \prime}, p=113^{\circ}$. Burnham also saw a star of 11 mag., $\mathrm{d}=128^{\prime \prime}, \mathrm{p}=21.8^{\circ}$.
$22^{\text {b }} 43^{\mathrm{m}}$	$-14^{\circ} 13^{\prime}$	τ Aquarii, 4 mag. and red, with a companion 5.5 mag., distance $130^{\prime \prime}$.
$22^{\text {b }} 51^{\text {m }}$	$-20^{\circ} 59^{\prime}$	S Aquarii, a star of a deep reddish-yellow colour, recognised as variable by Argelander in 1853. At maximum it is only 8 mag., at minimum 12 mag. Period 280 days.
$22^{\text {h }} 58^{\text {m }}$	$+27^{\circ} 26^{\prime}$	β Pegasi. The primary is variable, at maximum it is 2.2 , at minimum 2.7 mag. The changes of brilliancy are somewhat irregular, and are accompanied (or caused) by a change in the reddish tint of the star. The companion, which was observed by J. Herschel, is faint ; and in 1878 the measurements were $d=99^{\prime \prime}, p=208^{\circ}$.
$23^{\text {b }} 4^{m}$	$+74^{\circ} 44^{\prime}$	π Cephei, observed by J. Herschel as a double star, but found to be triple by the refractor at Pulkowa; the primary being itself double. The central star is 5 mag. The farther companion 11 mag. The nearer companion, which was first seen in the great refractor at Pulkowa is, according to Struve, 8.9 mag., distance $1.5^{\prime \prime}$.
$23^{\text {h }} 10^{\mathrm{m}}$	- $9^{\circ} 44^{\prime}$	ψ Aquarii, an easily-observed double star, recognised as such even by Chr. Mayer. According to Struve the primary is 4.5 mag., and of a deep yellow colour. The companion is 8.5 mag. and blue. Distance 49.6".
$23^{\text {b }} 13^{m}$	$-14^{\circ} 6^{\prime}$	94, Aquarii ($\Sigma 2998$), recognised as a double star by W. Herschel, 20 Aug. 1781. The primary is 6 mag. and yellowish-white, the companion 7 mag. and bluc. The companion's change of position is slight, but the similar motions of the stars show a physical relation between them.
$23^{\text {h }} 14^{m}$	$+67^{\circ} 27^{\prime}$	${ }^{0}$ Cephei ($\Sigma 3001$). The primary (deep yellow) is 5.5 mag., the companion (deep blue) 7.8 mag. The position of the companion seems to change pretty rapidly. Distance $27^{\prime \prime}$, angle of position 192°.
$23^{\text {h }} 14^{\text {m }}$	$+8^{\circ} 16^{\prime}$	S Pegasi, a variable star, of a yellowish red colour. At maximum it is occasionally 7 mag., but faint, at minimum it is only 12 mag. Nothing is known with regard to its period.
$23^{\text {h }} 19^{\text {m }}$	$+60^{\circ} 56^{\prime}$	4957, Star Cluster in Cepheus. Discovered by Messier 7 Sept., 1774, and described as follows: "A cluster of very small stars mingled with nebula. Can only be scen with an achromatic telescope." The cluster is preceded by two stars of 7 and 8 mag., and followed by one brilliant star. It contains one star of an orange colour.

Editorial Notb.-In "The Extension of the Law of Gravitation to Stellar Systems," by Prof. Asaph Hall (Gould's Astron. Journal, 177), it is shown that there is a theoretical difficulty in applying Newton's Law of Gravitation to double stars, a difficulty which is increased by the so-called "runaway" stars, like Groombridge, 1830, stars moving through space with the speed of a comet at perihelion, and yet with no visible attracting body near them. Prof. Hall's recent determination of the parallax of Areturus (only $+0.018 \pm 0.022$) if accepted brings this star within that category, for it has a great proper motion (amounting to 373 miles per second at right angles to line of sight, and 55 miles per second in the line of sight). The following Table gives some of the stars of which the parallax, and motion across, have been ascertained ;-

Star's Name.	Magnitude.	Parallax $=$	Distance in years of light.	Annual Motion aeross.	$\begin{gathered} =\text { Miles } \\ \text { per second. } \end{gathered}$
a Centauri	1	-900	$3 \cdot 57$	$3 \cdot 674$	$11 \cdot 9$
61 Oygni	5	-511	$6 \cdot 31$	$5 \cdot 221$	$30^{\text {. }}$
Lalande 21,185	7	-501	$6 \cdot 45$	$4 \cdot 734$	$27 \cdot 7$
Groombridge 34	8	-307	10.52	$2 \cdot 801$	$26 \cdot 2$
Lalande 21,285	$8 \cdot 5$	260	$12 \cdot 43$	$4 \cdot 403$	$49 \cdot 5$
- Argelander, 17,415	$9 \cdot 5$	247	13.08	$1 \cdot 200$	$14 \cdot 2$
σ Draconis . . .	5	222	14.56	1.925	$25 \cdot 3$
Sirius	1	-193	16.74	$1 \cdot 252$	19.
70 Ophiuchi	4	-162	$20 \cdot 0$	$1 \cdot 108$	20.
a Lyræ	1	-153	$21 \cdot 12$	0.347	6.7
Groombridge 1830	7	$\cdot 147$	$22 \cdot 0$	$7 \cdot 053$	140.
- Ursæ Majoris	3	$\cdot 133$	$24 \cdot 29$	0.525	$11 \cdot 6$
a Bootis.	1	-127	$25 \cdot 44$	$2 \cdot 258$	52.
γ Draconis	2	-092	$35 \cdot 12$	0.063	2.
a Aurigæ	1	-046	$24 \cdot 12$	$0 \cdot 438$	$27 \cdot 8$
Pole Star	2	-046	$24 \cdot 12$	0.045	$2 \cdot 9$

Printed by Perry, Gardner \& Co., $21 \& 22$, Cursitor Street, London,

Right Ascension $=3^{\text {h }}$. Declination $=+58^{\circ}$

Klein, StarAllas.

Right Ascension $=8^{\text {h }}$. Declination $=58^{\circ}$

Right Ascension $=13^{\text {h }}$. Declination $=+58^{\circ}$

Klein, StarAllas .

6管 $8.6 .3^{m}$
(1)

Right Ascension $=22^{\text {h }}$. Declination $=+58^{\circ}$

Right Ascension $=22^{\text {h }}$. Declination $=-3^{\circ}$

1

Right Ascension $=6^{\text {h }}$. Declination $=-3^{\circ}$

Right Ascension $=10^{\text {h }}$. Declination $=-3^{0}$

Right Ascension $=14$. Declination $=-3^{0}$

Right Ascension= $17^{\text {h }}$. Declination- 3°

Right Ascension $=22^{\text {h }}$. Declination $=-3^{\circ}$

* $6^{2} \cdot 26.3^{m}$

The Star cus

t he Pleiades.

RESH LIBEAPY
ONIVERSITY
CALIFORNM

Nebula G. C. 4355 after Trouvelot

Star Cluster G.C. 4294 after Trouvelot.

Rt. Asc. $19^{\mathrm{h}} 55^{\mathrm{m}}$ Decl. $+37^{0} 45^{\prime}$.
Part of the constellation of the Swan (Cygnus.)

The Omega Nebula after Holden and Trouvelot.
G. C. 4403 .

Crab Nebula in the Bull (Taurus)
after Rosse.
G. C. 1157 .

\%

Nebula G C. 1227 after Tempel.

Nebula G. C. 1511 after Tempel.

Nebula G.C. 4773 and its surroundings.

The New Star in Cassiopeia and its surrour after D'Arrest.

The Nebulæ G.C. $3105,3108,3109$ after Tempel.

Star Cluster G.C. 1295 after 0. Lohse.

Star Cluster G.C. 4230 after Trouvelot
x

[^0]: * In the Bakerian Lecture delivered at the Royal Soeiety, April 12th last, by J. Norman Loekyer, F.R.S., and afterwards published in Nature, a new theory is advanced to account for varialility. Mr. Lockyer considers that "new stars" are produced by the collision of meteor swarms, and that the more or less regular variables are owing to the periastron passage of one swarm through another (see Nuture, May ${ }_{2} 4,1888, \mathrm{p}$. 79). In this Lecture Mr. Lockyer endeavours to show that the heavenly bodies are all formed from meteoric dust, and that the differences between them are simply owing to the different degrees of condensation of the dust, and the consequently greater or fewer number of collisions of the particles; the slight condensation and comparatively few collisions giving rise to the weak light of the fainter nebulm, while the closely condensed swarms show, through all their stages, bright nebule, nebular stars, and real suns.- Fitron.

 4 In the Thirteenth Annual Heport of the Savilian Professor of Astronomy, read Jnne 6th, 1888, Dr. Pritchard gives a very interesting aceount of his later operations for stellar parallax, by photographing small portions of the heavens. He is satisfied, not only with the cenvenience of this method, but also with its unimpeachable accuracy. The following are the results obtained so far:-

[^1]: * See Editorial Note p. 71.

[^2]: * But see Note p. 8.-[EDir.]

